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ABSTRACT

Implementation of a neural network model-based
predictive control a wind energy conversion system
constrained by the linear matrix inequality LMI is
proposed is described in this paper. For that, the
multi-variable predictive control strategy is used
with an artificial neuro-fuzzy model and applied to a
non-linear wind energy conversion system. Among
the advantages of this approach is to calculate
future order entries from past input measurements,
based on the solution of a convex optimization
problem. Optimal control of multi-variable systems
is achieved using linear matrix inequality formalism
and by taking into account that whole wind energy
conversion system can be structured as several
interconnected subsystems. A neural network is
designed to estimate the optimum value of the
power-efficiency ratio of wind turbines.

Keywords: Wind turbines; Multi-Model predictive
control; LMI design; artificial neural network control.

Predictive control is a method that uses a model to predict the
response of the system to be controlled under a certain
number of constraints. This method did not really develop
until the early 1980s, thanks to the work of D. W. Clarke
[1][2][3]. MPC is a control technique for systems with
relatively slow dynamics or, at least, compatible with the fact
that at each sampling time the control signal results from
solving an optimization problem. Predictive control is a wide
and varied field and integrates disciplines such as optimal
control, multi-variable control and constrained control.
However, there is currently a lot of work and applications for
predictive controllers that are successfully operating in the
process industry. Advances technology and the use of
computers have made it possible to implement more
complicated and sophisticated techniques, which in turn has
made it possible to develop the MPC approach. The practical
interest of MPC is mainly due to the fact that today's
processes need to be operated under tight performance
specifications and more constraints need to be satisfied. MPC
is the possible solution for that due to its constraints handling
capability. A linear Matrix Inequalities (LMIs) formulation for
the MPC problem permits to obtain a controller optimizing

[3](4][5].

In this poster, we present the multi-variable predictive control
strategy (MMPC) and uses neural network approach for
Estimation Power Coefficient of wind energy conversion
systems and determinate model. The MPC constrained
optimization problem is formulated by LMI constraints. The
conversion systems for the entire wind energy can be
structured as several interconnected subsystems.

The predictive approach closest to the standard theory (Diaz
et al., 2018; Nanayakkara et al., 1997) for linear systems is
certainly the one that considers a model by state
representation:

x(k+ 1) = Ax(k) + Bu(t) (1)

y(k) = C x(k) (2)

z(k) = C,x(k) (3)
Where k € Z1, x(k) € R®™ n-dimensional state vector in
time k, u(k) € R'le command vector y(k) € R™ m,,-
dimensional outputs vector of the measured, z(k) € R™z m,-
dimensional output vector to be controlled, A, B, C}, et C,
matrices of appropriate dimensions. Controlled outputs z(k)
may in principle depend on ufk) .

The cost function [ to be minimized at each sampling time, its
penalizes the deviations of the predicted outputs z'(k + i|k)
from a reference trajectory r(k + i|k) in the variations of the
control vector Au(k) = u(k) —u(k — 1), it is often given by
the quadratic form [6] [7]:

JU) = 27, (rk +8) — 20k + 0) 0 (rtk+ 0 — 2k + 1) +

B Yl + DR wll + ) + dulle+ 07 S Aulle + 0))(3)

H, , H, prediction horizon and the control horizon, Hy, < H),
et Al(k+ilk)=0 for i=H,Q()=0,R{)>0 its
weighting matrix.

I =Hmin

Adi(k|k)
5 (5)
Afi(k + H, — 1|k)
for Eq. (3) the prediction value of zis
ak+1R) ] [ D 11 20k + 11k)
. 0 C, .
- : — | : ] : {E}
2(k + Hy|k) o 2(k + Hy|k)
From Eq. (4) we have :
JU) = lIZ() = T()II5 + AU (k) (7)
where
20k + H, k) Fk + Ho k) Afile| )
Z(k) = : T(k) = : AUk = :
2k + Hy|k) Pl + Hylk) Atk + H, — llk'}‘
The weighting matrices Q and R are obtained by:
Qi) 0 0 R(O) O 0
a=( ] 0 2 o ] S ]
0 0 = Q(Hp) 0 0 R, = 1)
For Eq. (8)and Eq. (9), Z(k) we obtain
J(&) = const — AUCK)TG + AU(K)THAU (k) (8)
where
0= ZﬂT_QE(k) (9)
H=0"00+ (10)
Vavao (k) = —G + 2HAU (k) (11)

The optimal sequence of future control variation is:

1
AU(K) o= > (12)
11 lexiste car I > 0.

u{k)opt = ﬂu(k)opt Foule =1} (13)

Constants formed are :
AU(K) U(k) Z(k)
] 0 E[P] 20 L 6f Y] =0
The neuron model is used to estimate power coefficientthe process and

determinate the model of wind turbine, and predict output speed control
under the constraints::
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Figuré 2 Desired control angle with the MMPL controller using Adaptive
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The purpose of the control is to achieve the optimal
performance of the nominal power while regulating the
rotor speed. The system converges 10 the reference value,
and then stabilizes. With a little overtaking. This response
is obtained for a horizon # =90 and H“=1 and the torsion
angle 8, reduces because the values of the speeds p and
n are nearly equal. Figure 2, the constants on the cdntrol
arfe u € [—3, 3.2]. The optimization problem at each step is
solved using Matlab software.

In this work, we presented the design and simulation of the
multivariable predictive control (MPC) based on artificial
neural network Approach in order to estimate the wind
turbine parameters. An Adaptive neural network Approach is
designed to estimate the optimum value of the power-
efficiency ratio of wind turbines.

The experiments and the tests show the importance of the
choice of the control prediction horizon. A low prediction
horizon may not take into account the future performance of
the process properly, while a high prediction horizon requires
a high computation time. The obtained results show the
efficiency of the proposed approach.

In future work, it would be interesting to implement the
control algorithm proposed in this work to control the wind
energy conversion system and other nonlinear systems in real
time.
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Flgure 1 Wind turbine power coefficient Cp as function of tip-speed ratio A and blade pitch angle 5. And
neural netwark of Cp.

The variables in the wind turbine are assumed to vary with in
the operatingrange V; s V< V. ﬁl <f Sﬁz.

Therefore, the non-linear system can be estimated parameters
the equivalent model of wind turbine with estimate power
coefficient by neural network[7-11].
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