

Name : First name:

Ain M'Lila 14/01/2026

Metrology 2 quality 1 exam

Choose the correct answer: (09 pts)

<p>1. In physics, making a measurement means:</p> <p>A. Finding the exact value of a physical quantity B. Estimating a quantity without instruments C. Determining the numerical value of a physical quantity D. Eliminating all measurement errors</p>	<p>2. Why is it impossible to know the exact (true) value of a quantity?</p> <p>A. Because instruments do not exist B. Because measurement errors are unavoidable C. Because calculations are incorrect D. Because scientists do not agree</p>
<p>3. Measurement error is defined as:</p> <p>A. The uncertainty of the instrument B. The difference between the measured value and the true value C. The variation of repeated measurements D. The precision of the instrument</p>	<p>4. Why is the measurement error itself unknown?</p> <p>A. Because the measured value is incorrect B. Because the instrument is poorly calibrated C. Because the true value is unknown D. Because measurements are not repeated</p>
<p>5. What is used to judge the precision of a measurement?</p> <p>A. The true value B. The measurement error C. The unit of measurement D. The measurement uncertainty</p>	<p>6. Measurement uncertainty represents:</p> <p>A. The exact value of the quantity B. An interval where the true value is likely to be found C. A mistake made during measurement D. The instrument resolution only</p>

Problem

Let consider the following equations:

$$f(x, y, z) = x\sqrt{z - y}$$

$$g(x, y, z) = x^3 + \sqrt{y} - \sqrt{z}$$

Data:

With: $x = 5.08 \pm 0.17$; $y = 12.6 \pm 0.2$; $z = 19.31 \pm 0.06$

- Give the value of $f(x, y, z)$ and its uncertainty (using the GUM method)
- Give the value of $g(x, y, z)$ and its uncertainty (using the GUM method)
- Which error is dominating in $g(x, y, z)$ function?

Pr. K. Abouché

problem (corrected) 61pt

✓ $f(x, y, z) = x \sqrt{z-y}$ calculation of f : $f = 13,16$ 0,5pt

$$\frac{\partial f}{\partial x} = \sqrt{z-y} \quad \text{0,5pt} ; \quad \frac{\partial f}{\partial y} = -\frac{x}{2\sqrt{z-y}} \quad \text{0,5pt}$$

$$\frac{\partial f}{\partial z} = \frac{x}{2\sqrt{z-y}} \quad \text{0,5pt}$$

$$\left\{ \begin{array}{l} \frac{\partial f}{\partial x} \approx 2,59 \quad \text{0,5pt} \\ \frac{\partial f}{\partial y} \approx -0,98 \quad \text{0,5pt} \\ \frac{\partial f}{\partial z} \approx 0,98 \quad \text{0,5pt} \end{array} \right.$$

$$\text{0,5pt} \Delta f = \sqrt{\left(\frac{\partial f}{\partial x} \Delta x\right)^2 + \left(\frac{\partial f}{\partial y} \Delta y\right)^2 + \left(\frac{\partial f}{\partial z} \Delta z\right)^2} = \sqrt{(2,59 \cdot 0,17)^2 + (0,98 \cdot 0,2)^2 + (0,98 \cdot 0,06)^2}$$
$$\Rightarrow \Delta f = 0,49 \quad \text{0,5pt} \quad \text{so, } f = 13,16 \pm 0,49 \quad \text{0,5pt}$$

✓ $g(x, y, z) = x^3 + \sqrt{y} - \sqrt{z}$ calculating g : $g = 130,16$ 0,5pt

$$\frac{\partial g}{\partial x} = \frac{3x^2}{2\sqrt{y}} \approx 77,4 \quad \text{0,5pt}$$

$$\frac{\partial g}{\partial y} = \frac{1}{2\sqrt{y}} \approx 0,141 \quad \text{0,5pt}$$

$$\frac{\partial g}{\partial z} = \frac{-1}{2\sqrt{z}} \approx -0,141 \quad \text{0,5pt}$$

$$\text{0,5pt} \Delta g = \sqrt{\left(\frac{\partial g}{\partial x} \Delta x\right)^2 + \left(\frac{\partial g}{\partial y} \Delta y\right)^2 + \left(\frac{\partial g}{\partial z} \Delta z\right)^2} = \sqrt{(77,4 \cdot 0,17)^2 + (0,141 \cdot 0,2)^2 + (-0,141 \cdot 0,06)^2}$$
$$\text{0,5pt} \Delta g = 13,16 \quad \text{so, } g = 130,16 \pm 13,16 \quad \text{0,5pt}$$

✓ the dominating error in g function is $\left[\frac{\partial g}{\partial x} \Delta x\right]$ 0,5pt

$$\text{equal to } 77,4 \cdot 0,17 = 13,158 \approx 13,16 \quad \text{0,5pt}$$