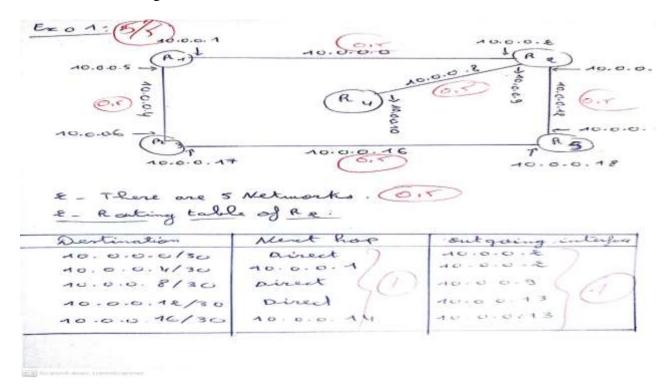
University of Larbi BEN M'HIDI 2024-2025 Name :

EXAM IN NETWORKS 3Responsible: Dr MELLAL N.

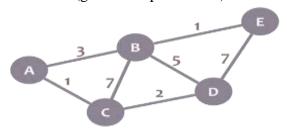
Dr MELLAL N.

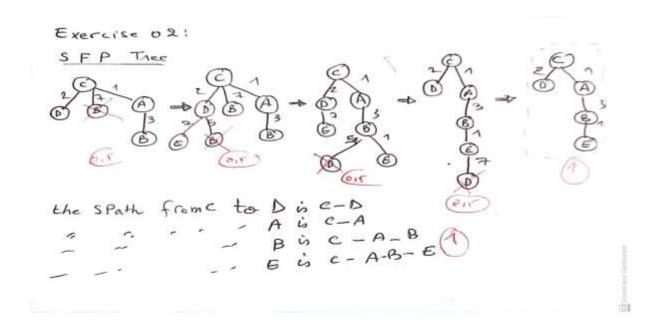
Name :		Group :		
Questions of understanding (7.5 points, -0.25 for the wrong answer): Choose the correct answer(s):				
1. VLAN segmentation involves:				
☐ Combining multiple networks into one	☐ Physically separating network d	evices		
☐ Dividing a single physical network into	multiple logical networks			
2. What is the purpose of VLAN trunk	king?			
☐ To encrypt VLAN data ☐ To carry train	ffic for multiple VLANs over a singl	e link.		
☐ To connect VLANs across different physical locations				
3. What is the primary function of a router in a network?				
☐ Forwarding data packets between devi	ces within the same network segmen	it.		
□ Filtering network traffic based on IP addresses.				
□ Connecting multiple networks together and forwarding data between them.				
□ Providing wireless access to network devices.				
4. Which of the following is NOT a type of routing protocol?				
☐ Static routing ☐ Dynamic routing		routing		
5. We use an algorithm in dynamic ro				
□ Determine the best path determination	 			
□ discover neighbors and exchange the routing information				
□ specify the preference of a particular route				
6. Which two (2) statements describe the OSPF protocol?				
= automatically summarizes naturally at	the classful boundaries			
□ automatically summarizes networks at □ calculates its metric using bandwidth	□ has an administrative distance	of 100 uses Dijkstra's		
algorithm to build the SPF tree		or roo		
7. The OSPF protocol is an intra-domain routing protocol based on routing				
D' A W A B A A				
□ Distance Vector □ link state	□ path vector			
8. RIP stands from :				
	D : I : D : 1			
□ Routing Information Protocol	□ Routing Internet Protocol			
□ Reverse Interior Protocol	□ Run Information Protocol			
9. Which type of routing protocol typically exchanges routing information between routers within the				
same autonomous system (AS)?				
□ Interior Gateway Protocol (IGP)	☐ Exterior Gateway Protocol (EC	GP)		

- □ Border Gateway Protocol (BGP)
- □ Static Routing Protocol


10. What is the purpose of the Internet Assigned Numbers Authority (IANA) with respect to Autonomous Systems?

- ☐ To assign IP addresses to Autonomous Systems
- □ To regulate the use of routing protocols within Autonomous Systems
- ☐ To manage routing policies between Autonomous Systems
- ☐ To allocate Autonomous System Numbers (ASNs)


Exercise 01 (5 points): Consider a small network consisting of five routers (R1, R2, R3, R4, and R5) interconnected as follows:


R1 is connected to R2 and R3.	Using the following IP addresses for the router interfaces:	
 R2 is connected to R1, R4, and 		
R5.	• R1-R2 link: 10.0.0.1/30 (R1) and 10.0.0.2/30 (R2)	
 R3 is connected to R1 and R5. 	• R1-R3 link: 10.0.0.5/30 (R1) and 10.0.0.6/30 (R3)	
• R4 is connected to R2.	• R2-R4 link: 10.0.0.9/30 (R2) and 10.0.0.10/30 (R4)	
 R5 is connected to R2 and R3. 	• R2-R5 link: 10.0.0.13/30 (R2) and 10.0.0.14/30 (R5)	
	• R3-R5 link: 10.0.0.17/30 (R3) and 10.0.0.18/30 (R5)	

- 1. Give the corresponding topology of the networks specifying the IP addresses of the different networks and the IP address of each router interfaces.
- 2. How many networks are in this topology
- 3. Determine the routing table of R2

<u>Exercice 02 (4 points):</u> applying the Dijkstra Algorithm, calculate the shortest path from the C node to other nodes. Illustrate by the Shortest **Path Tree**. (give all steps in detail)

Exercice 03 (4 points): complete the table below:

Protocol	RIP	OSPF
AD	120	110
Maximum routers in the network.	15	unlimited
Metric	Hop	bandwidth
	Count	
Algorithm	Bellman Ford	Djikstra
Protocol type	Distance	Link State
	vector	