
Name :		Group:	Mark:	
	IP RO	UTING I	Exam	
	(ultiple-Choice Questions (10 points	, -0.5 points for eac	ch incorrect answer): choose the c	correc
1-	From what location can a router lo	oad the Cisco IOS o	during the boot process?	
-	RAM TFTP server NVRA		_	
2-	Which are functions of a router? (_ •		
	packet switching	_	t path based on logical addressing	
	extension of network segments	_	broadcast domains	
	selection of best path based on phys			
3-	What is the main difference between		ocol and a routed protocol?	
	A routing protocol is used to forwar information.	d user traffic, while a	routed protocol is used to exchange rou	uting
	A routing protocol is used to exchanuser traffic.	ige routing informatio	on, while a routed protocol is used to for	rward
	A routing protocol operates at Layer	r 2, while a routed pro	otocol operates at Layer 3.	
	A routing protocol is used to configuration A routing protocol is used to configuration.	ure IP addresses, whil	le a routed protocol is used for managin	ıg
4-	What is a disadvantage of dynam	ic routing?		
	It requires manual intervention to ch	nange routes.		
	It may consume more network band	width and resources d	due to frequent route updates.	
	It doesn't support large networks.	It is only useful in	in small-scale networks.	
5-	Which statement best describes a r	outer's role in dyn	namic routing? The router	
	creates static routes to the destination	on networks. only	uses a default route for all destinations	
	exchanges routing information with	other routers to dynar	mically build its routing table.	
	manually configures routes for all po	ossible destinations.		
6-	Which of the following is an examp	ole of an Interior G	Sateway Protocol (IGP)?	
	BGP (Border Gateway Protocol) EIGRP (Enhanced Interior Gateway	Routing Protocol)	OSPF (Open Shortest Path First) None of the above	

7-	In which s	scenario is VLSM mo	st beneficial	?				
	_	network needs to be div	•					
		single subnet is used for						
	=	ere are no restrictions o						
8-	How does	VLSM help in reduc	ing IP addre	ss wastage?				
	By using only a single subnet mask for the entire network.							
By allowing different subnet masks for each subnet according to their size.					eir size.			
By restricting the number of subnets available in a network.								
	By mak	ring subnets larger than	necessary.					
9- What is Inter-VLAN Routing?								
	The process of routing traffic between two VLANs on the same switch.							
The process of allowing communication between devices in different VLANs.					nt VLANs.			
The process of configuring VLANs on a router.								
The process of segmenting traffic on a single VLAN.								
10								
10- In Router-on-a-stick Inter-VLAN Routing, what type of connection is typically used between the router and the switch?								
	0110 1 0 01001							
	A trunk link An access link A crossover link A fiber-optic link							
Exercise 2 (4 points): Compare the protocols RIP, OSPF, EIGRP and BGP by addressing the								
following aspects: Type of protocol, Abbreviation and Administrative Distance, Maximum nu								
of routers supported, Metric used for route selection, and the used Algorithm.								
P	rotocol	RIP	OSPF	EIGRP	BGP			
A	AD	120	110	90 (internal), 170 (external)	20 (external), 200 (internal)			
n	naximum	15	unlimited	255	unlimited			

Protocol	RIP	OSPF	EIGRP	BGP
AD	120	110	90 (internal), 170	20 (external), 200 (internal)
			(external)	
maximum	15	unlimited	255	unlimited
routers in the				
network.				
metric	Hop Count	bandwidth	(Bandwidth,	Path Attributes (e.g., AS Path, Weight)
			Delay,	
			Reliability, Load)	
Algorithm	RIP works on	OSPF	Dual (Diffusing	Path vector algorithm
	Bellman Ford	works on	Update	
	algorithm.	DIJKSTRA	Algorithm)	
		Algorithm.		
Protocol type	Distance vector	Link State	Distance vector	Path Vector

Exercise 3 (6 points)

1. How many networks in the figure?

4 networks

2. Using the address **192.168.1.0/24**. determine the class of this network Class C

Using subnet masks with variable length (VLSM) propose an addressing plan for the networks using the table bellow (starting from the biggest network to the smallest).

Network	Net@	Mask	Broadcast @	Number of hosts per subnet	Hosts @ range
Engineering	192.168.1.0	/26 255.255.255.192	192.168.1.63	62	192.168.1.1 to 192.168.1.62
Sales	192.168.1.64	/26 255.255.255.192	192.168.1.127	62	192.168.1.65 to 192.168.1.126
Accounting	192.168.1.128	/27 255.255.255.224	192.168.1.159	30	192.168.1.129 To 192.168.1.158
HR	192.168.1.160	/28 255.255.255.240	192.168.1.175	14	192.168.1.161 To 192.168.1.174

3. Determine the number of the used ip addresses and the free (unused) ones.

Used ip addresses: 192.168.1.0-192.168.1.175 (176 @)

Free ip addresses: **192.168.1.176-192.168.1.255** (**80**@)