Exam of Physics 1

Course questions:

I - Mention the properties of conductors in electrostatic equilibrium?

II - A conductive sphere (A) of radius R is connected to a constant voltage generator (Fig 1-A).

1- Represent, qualitatively, the charge on the conductive sphere (A).

2- We place next to (A) an insulated conductor (B) that is neutral (Fig 1-B). Represent qualitatively the new distribution of charges on the two conductors, justify.

3- If we connect the conductor (B) to the ground by a conductive wire (Fig 1- C), give the new distribution of charges.

Exercise 1 :

3 capacitors of capacity C₁, C₂, C₃, are connected as shown in the diagram. a voltage is applied between the two points A and B: $V_{AB} = 150 \text{ V}$. We give: $C_1 = 1\eta F$, $C_2 = 1\eta F$.

 $C_3=2\eta F$

1- Calculate the capacitance of the equivalent capacitor.

- 2- Calculate the charge of the equivalent capacitor.
- 3- Calculate the electric charge of each capacitor.
- 4- Calculate the potential difference between the two

ends of each capacitor.

5- Find the energy stored in the capacitor C_2 .

Exercise 2 :

Two point charges q_B and q_C are placed at the vertices B and C of an equilateral triangle of side 1m.

- 1- Find the electrostatic field at point A.
- 2- Find the electric potential at point A.

3- We place a charge $Q_A = 10^{-6}$ C at point A. Find the force exerted by the two charges on Q_A .

4- Calculate the internal energy of this system of 3 charges.

 $q_B = -10^{-6}C$, $q_C = 10^{-6}$, $K = 9.10^9$ N. m². C⁻² AB = AC = BC = a = 1m

A sphere with center O and radius R carries a total charge Q distributed evenly over its volume. With a charge density ρ , \vec{E} is the electrostatic field generated by this sphere at a point M in space. Using the Gauss theorem, find E(r) in terms of ρ and R. Consider the cases r < R and r > R

(Figure 4)

(Figure 3) B

R

BON COURAGE

С

Physics Excam correction. cours questions: (3, V Pts) I. properties of conductors in electrostatic equilibrium: 1). The field E'inside the conductor is Zew E=0 2). The sum of Rint changes inside the conductor is zero 3) The electric potentiel inside is constat V=ct $\vec{F}=\vec{O}$, $\vec{E}=\vec{O}$ saint = 0 or V = cte or I Figure (1-C) Figure (1-B) Figure (1-A) The positive changes of the conductive sphere (A) attract attract the negative changes of the conductor (B) and repel the positive charges. ver have a new distribution of the changes of B. This is the phenomenon of partial TEC OIT influence. Exercised: (8Pts) A) E le ctrostatic field at point A: We use the principle of supperpositor FA $E_A = E_B + E_C$ (ON) $a = \frac{a}{e_B} a = c$ (+9)

$$\begin{cases} E_{g_{g}} = E_{g} \cos d \\ E_{g_{g}} = E_{g} \cos d \\ E_{g_{g}} = E_{g} \sin d \\ e_{g} = K \cdot \frac{|q_{B}|}{a^{2}} \cos^{2} d \\ q_{g} = -q \\ e_{g} = k \cdot \frac{|q_{g}|}{a^{2}} = k \cdot \frac{q}{a^{2}} \cos^{2} d \\ e_{g} = k \cdot \frac{|q_{g}|}{a^{2}} = k \cdot \frac{q}{a^{2}} \cos^{2} d \\ e_{g} = k \cdot \frac{|q_{g}|}{a^{2}} = k \cdot \frac{q}{a^{2}} \cos^{2} d \\ e_{g} = -\frac{kq}{a^{2}} (d = \frac{\pi}{6}) \\ h \cdot d = \frac{\pi}{2} \\ E_{g} = -\left(\frac{kq}{a^{2}} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\left(\frac{kq}{a^{2}} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\left(\frac{kq}{a^{2}} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \cdot \frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2} \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \cdot \frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2} \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{kq}{a^{2}} \cdot \frac{q}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{q}{a^{2}}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right) \\ \overline{E}_{g} = -\frac{kq}{a^{2}} \left(-\frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right) \\ \overline{E}_{g} =$$

$$\begin{aligned} F_{A} &= E_{B} + E_{C} \\ A &= \frac{kq}{a^{2}} \left(-\frac{1}{2} \cdot -\frac{1}{2} \cdot \right) + \frac{kq}{a^{2}} \left(-\frac{\sqrt{3}}{2} \cdot \frac{1}{3} + \frac{\sqrt{3}}{2} \cdot \frac{1}{3} \right) \\ F_{A} &= -\frac{kq}{a^{2}} \cdot \frac{\sqrt{3}}{2} \cdot \frac{kq}{a^{2}} = \frac{g_{A}g_{A}}{12^{2}} \\ &= g_{A} \cdot \frac{\sqrt{3}}{3} \cdot \frac{\sqrt{4}g_{A}}{a^{2}} = \frac{g_{A}g_{A}}{12^{2}} \\ F_{A} &= g_{A} \cdot \frac{\sqrt{3}}{3} \cdot \frac{\sqrt{4}g_{A}}{a^{2}} \\ F_{A} &= g_{A} \cdot \frac{\sqrt{4}g_{A}}{3} \cdot \frac{\sqrt{4}g_{A}}{a^{2}} + \frac{\sqrt{4}g_{A}}{a^{2}} \\ S_{A} &= \sqrt{6} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= q_{A} \cdot \frac{1}{3} \cdot \frac{\sqrt{4}g_{A}}{a^{2}} + \frac{\sqrt{4}g_{A}}{a^{2}} + \frac{\sqrt{4}g_{A}}{a^{2}} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= q_{A} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} \\ F_{A} &= 1 \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3$$

 $E_{1} = k \cdot \frac{-q^{2}}{\alpha} + k \cdot \frac{-q^{2}}{\alpha} + k \cdot \frac{q^{2}}{\alpha}$ $E_{1} = \frac{kq^{2}}{\alpha} (-1 - 1 + 1)$ $E_{1} = -\frac{kq^{2}}{\alpha} = -\frac{g.1g^{2}.(156)}{1}$ E: = -9.103; (0,25) Exercise 1: (49ts) A IF B 1) Equivalente capacitos: $C_2 // C_3 = C_{eq} = C_{+} C_{+}$ Ceq1=3NF OR C1 on series with Ceq1 Ceq - Cn. Ceqn = One $Ceq = \frac{1 \times 3}{1+3} = \frac{3}{4} = 0,75$ 2) change of the equivalente copacitir : QT= Ceq · VAB(ari) 27 = 07 F. 150 = 112, 7C 3) électric change of each capacitor. Q1 = QT = 112, Syco 21

Q2=? Q3=? $C_2 / / C_3 = 0$ $U_2 = U_3$ $Q_2 = C_2 V_2 =) V_2 = \frac{d_2}{C_2}$ $Q_3 = C_3 U_3 = U_3 = \frac{A_3}{C_3}$ V2 = U3 => (0,2) $\frac{\alpha_2}{C_2} = \frac{\alpha_3}{C_3}$ C3=2C2 (012) $\frac{a_2}{\sqrt{2}} = \frac{a_3}{2\sqrt{2}}$ a3 = 2a2 $a_1 = a_2 + a_3 = a_2 + 2a_3 = 3a_2$ $a_2 = \frac{a_1}{3} = \frac{112}{3} = \frac{37}{3} = 37$ is nc 93=2012=2×3715=752C 4) potentiel difference between the two ends of each capacitor: $U_{1} = \frac{a_{1}}{c_{1}} = \frac{112}{10^{-9}} = -112$, rv(0,2) $U_2 = \frac{d_2}{C_2} = \frac{37}{409} = 3715 V(012)$ $V_{3} = \frac{Q_{3}}{C_{3}} = \frac{7.7.10}{2.10^{5}} = 37.15 V_{012}$

5) Evergy Stored in the
capacita
$$C_2$$

 $E_2 = \frac{1}{2} C_2 V_2^2$ (or)
 $= \frac{1}{2} \cdot \frac{10}{37} (37, 6)^2 = 703.10^3 J$
 $= 0.7M J$ (or)
 $E = 0.7M J$ (or)
 $E = 0.7M J$ (or)
 $P = \iint E \cdot dS = E \cdot di^2$ (or)
 $Q = \iint E \cdot dS = E \cdot di^2$ (or)
Case $\Delta : F < R$
 $V = K$
 $V = K$
 $V = K$
 $E_1 \cdot G = \frac{2}{2} \cdot di^2$ (or)
The distribution of changes
is on Volume :
 $Q = \int \cdot V = \int \cdot \frac{L}{3} = \pi^2 \cdot \frac{V}{3}$
 $E_{int} \cdot L(\pi r^2 = \frac{P}{5} \cdot \frac{V}{3} + \pi^2)$
 $E_{int} = \frac{3}{35} + 0.5$

cose2 : r > R $\partial_{i}L = \frac{P}{V} = \frac{P}{3} + \frac{1}{3} +$

4