Exercice 1: Conversion

1. (a) (1 point) Convertir les nombres décimaux suivants en base binaire :

i. 511

ii. 120,125

(b) (1 point) Convertir les nombres décimaux suivants en base hexadécimal :

i. 16

ii. 200,0625

(c) (1 point) Convertir les nombres décimaux suivants en base octal :

i. 200

ii. 10,0625

2. (a) (1 point) Convertir les nombres hexadécimaux suivants en base 10 :

i. 10,3

ii. A1

(b) (½ point) Par conversion rapide convertir les nombres précédents en base binaire.

(c) ($\frac{1}{2}$ point) Par conversion rapide convertir les nombres précédents en base octal.

Exercice 2 : Complément à deux

Dans cet exercice nous utilisons un codage en complément à 2 sur 11 bits.

1. (1 point) Donnez l'intervalle des nombres qu'il est possible de représenter dans ce codage.

2. (4 points) Effectuez les opérations suivantes en CA2.

i.
$$201_{10} + 302_{10}$$

iii.
$$-280_{10} + 16_{10}$$

ii.
$$-301_{10} - 450_{10}$$

iv.
$$-12_{10} - 150_{10}$$

Exercice 3: Afficheur 7 segments

Un affichage à sept segments est une technique d'affichage basé sur sept segments qui peuvent être activés ou désactivés en fonction du motif graphique à produire.

Il est composé de sept segments : a, b, c, d, e, f et g :

On veut afficher les chiffres de 0 à 9 : l'entrée du circuit est le code binaire du chiffre à afficher, la sortie est le signal qui allume ou éteint chaque segment.

- 1. (2 points) Etablissez la table de vérité d'un décodeur BCD/7 segments : 4 entrées X3, X2, X1, X0 pour représenter les chiffres de 0 à 9 (ex : 0010 représente le chiffre 2); les sorties sont les 7 segments.
- 2. (4 points) Etablissez le tableau de Karnaugh des sorties a, b, c, d de la table de vérité. Déterminez les groupements optimaux pour la simplification et en déduire les équations de ces sorties
- 3. (4 points) Réalisez le circuit des segments a, b, c, d séparément.

Exercice 1 : Conversion

1. (a) (1 point) Convertir les nombres décimaux suivants en base binaire :

i. 511

ii. 120,125

Solution:

i.
$$511_{10} = 1111111111_2$$

ii.
$$120,125_{10}=1111000,001_2$$

(b) (1 point) Convertir les nombres décimaux suivants en base hexadécimal :

i. 16

ii. 200,0625

Solution:

i.
$$16_{10} = A_{16}$$

ii.
$$200,0625_{10} = C8,1_{16}$$

(c) (1 point) Convertir les nombres décimaux suivants en base octal :

i. 200

ii. 10,0625

Solution:

i.
$$200_{10} = 310_8$$

ii.
$$10,0625_{10}=12,04_8$$

2. (a) (1 point) Convertir les nombres hexadécimaux suivants en base 10 :

i. 10,3

ii. A1

Solution:

i.
$$10, 3_{16} = 16, 1875_{10}$$

ii.
$$A1_{16} = 161_{10}$$

(b) $(\frac{1}{2}$ point) Par conversion rapide convertir les nombres précédents en base binaire.

Solution:

i.
$$10, 3_{16} = 00010000, 0011_2$$
 ii. $A1_{16} = 10100001_2$

ii.
$$A1_{16} = 10100001_2$$

(c) ($\frac{1}{2}$ point) Par conversion rapide convertir les nombres précédents en base octal.

Solution:

i.
$$10, 3_{16} = 20, 148$$

ii.
$$A1_{16} = 241_8$$

Exercice 2 : Complément à deux

Dans cet exercice nous utilisons un codage en complément à 2 sur 11 bits.

1. (1 point) Donnez l'intervalle des nombres qu'il est possible de représenter dans ce codage.

Solution : L'intervalle des nombres représentable dans un codage CA2 sur 11 bits est $[-2^{11-1},2^{11-1}-1]$ donc de -1024 à +1023

2. (4 points) Effectuez les opérations suivantes en CA2.

i.
$$201_{10} + 302_{10}$$

iii.
$$-280_{10} + 16_{10}$$

ii.
$$-301_{10} - 450_{10}$$

iv.
$$-12_{10} - 150_{10}$$

Solution:

i. Valide

$$+201 = 00011001001_{11c2}$$

$$-280 = 11011101000_{11c2}$$

$$+302 = 001001011110_{11c2}$$

$$+16 = 00000010000_{11c2}$$

$$+503 = 00111110111_{11c2}$$

$$-264 = 110111111000_{11c2}$$

ii. Valide:

iv. Valide:

la retenue = au dernier bit de report 1 - 1

la retenue = au dernier bit de report 1 - 1

$$-301 = 11011010011_{11c2}$$

$$-12 = 111111110100_{11c2}$$

$$-450 = 110001111110_{11c2}$$

$$-150 = 11101101010_{11c2}$$

$$-751 = 10100010001_{11c2}$$

$$-162 = 111010111110_{11c2}$$

Exercice 3: Afficheur 7 segments

Un affichage à sept segments est une technique d'affichage basé sur sept segments qui peuvent être activés ou désactivés en fonction du motif graphique à produire.

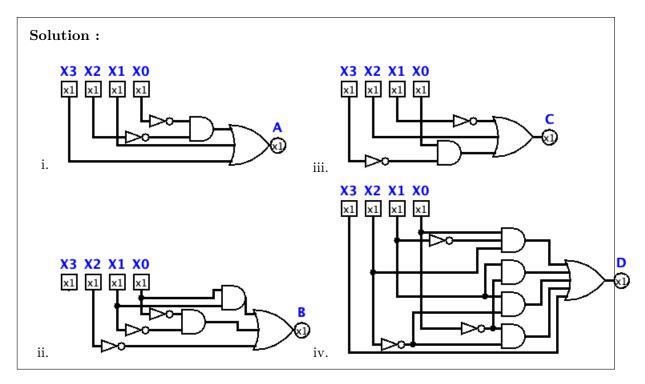
Il est composé de sept segments : a, b, c, d, e, f et g :

On veut afficher les chiffres de 0 à 9 : l'entrée du circuit est le code binaire du chiffre à afficher, la sortie est le signal qui allume ou éteint chaque segment.

1. (2 points) Etablissez la table de vérité d'un décodeur BCD/7 segments : 4 entrées X3, X2, X1, X0 pour représenter les chiffres de 0 à 9 (ex : 0010 représente le chiffre 2); les sorties sont les 7 segments.

	V	V	X_1	X_0	a	b	С	d	е	f	ď	Chiffre
Solution:	X_3	X_2			a			u		1	g	
	0	0	0	0	1	1	1	1	1	1	0	0
	0	0	0	1	0	1	1	0	0	0	0	1
	0	0	1	0	1	1	0	1	1	0	1	2
	0	0	1	1	1	1	1	1	0	0	1	3
	0	1	0	0	0	1	1	0	0	1	1	4
	0	1	0	1	1	0	1	1	0	1	1	5
	0	1	1	0	1	0	1	1	1	1	1	6
	0	1	1	1	1	1	1	0	0	1	0	7
	1	0	0	0	1	1	1	1	1	1	1	8
	1	0	0	1	1	1	1	1	0	1	1	9

2. (4 points) Etablissez le tableau de Karnaugh des sorties a, b, c, d de la table de vérité. Déterminez les groupements optimaux pour la simplification et en déduire les équations de ces sorties.



3. (4 points) Réalisez le circuit des segments a, b, c, d séparément.

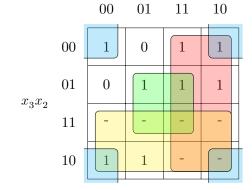
Solution:

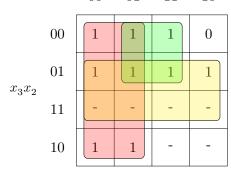
i.
$$a = x_3 + x_1 + x_2 x_0 + \bar{x_2} \bar{x_0}$$

iii. $c = \bar{x_1} + x_2 + \bar{x_3}x_0$

 x_1

00 01 11 10





ii.
$$b = \bar{x_0} + \bar{x_1}\bar{x_0} + x_1x_0$$
$$x_1x_0$$

iv.
$$d = x_3 + \bar{x_2}\bar{x_0} + \bar{x_2}x_1 + x_1\bar{x_0} + x_2\bar{x_1}x_0$$

 x_1x_0

