Université Larbi Ben M'hidi Oum El Bouaghi

Institut : Gestion des Techniques Urbaines Département : Gestion des Techniques Urbaines

> 1^{er}Année Master semestre 01 LMD 2024 / 2025 Option: Genie Urbaine_ Gestion des Réseaux Urbain_

Corrige Type

Module : Sols Et Sous-Sols Et Risques Naturels

Exercice 01: (06 pts)

Tableau (04 pts)

Ouverture des tamis	Refus des tamis	Refus cumulés	Refus cumulé	Tamisât cumulé
(mm)	(g)	(g)	(%)	(%)
12,5	0	0	0,00	100,00
5	217	217	6,20	93,80
2	868	1085	31,00	69,00
1	1095	2180	62,29	37,71
0,5	809	2989	85,40	14,60
0,2	444	3433	98,09	1,91
0,1	67	3500	100,00	0,00

- Calcules **Cu** et **Cc**, sachant que $D_{10} = 1,4$; $D_{30} = 0,8$ et $D_{60} = 0,4$.

$$\mathbf{D_{10}} = 1,4$$

$$\mathbf{D}_{30} = 0.8$$

$$\mathbf{D}_{60} = 0.4$$

$$Cu = \frac{D60}{D10} = 0,286$$

(**01pt**)

$$Cc = D30^2 / D10*D60 = 1,143$$
 (01pt)

Exercice 02: (09 pts)

SURFACE Sable $5 \, \text{m}$ $\gamma_t = 21,20 \, \text{KN} / \text{m}^3$ H = 12 m

a) s'il n'y a pas de nappe, la contrainte effective sera égale à la contrainte totale :

$$\sigma'_{VA} = \sigma_{VA} = \gamma t^* H = 21,2^*12 = 254,4 \text{ KPa}$$
 (03pts)

b) si la nappe phréatique est à 5 m de profondeur :(03pts)

$$hp = 12 - 5 = 7 \text{ m}$$

$$u = h_{\rm W}$$
. $\gamma_{\rm W} = 10*7=70$ KPa

$$\sigma'_{VA} = \sigma_{VA} - \mathbf{u} = 184,4 \text{ KPa}$$

c) si la nappe phréatique est en surface :(03pts)

$$hp = 12 m$$

$$u = h_{\rm W}$$
. $\gamma_{\rm W} = 10*12=120$ KPa

$$\sigma'_{VA} = \sigma_{VA} - u = 134.4 \text{ KPa}$$

Exercice 03: (05 pts) Justification des relations:

*
$$n = \frac{e}{1+e} : (02pts)$$

$$n = \frac{V_V}{V_t} = \frac{V_V}{V_s + V_v} \quad \left(x \; \frac{1}{V_s}\right), \qquad \text{puisque} : e = \frac{V_V}{V_S}$$

Donc:
$$n = \frac{e}{1 + e}$$

*
$$\gamma_s = (1 + e)\gamma_d : (03pts)$$

On
$$a : \gamma_s = \frac{W_s}{V_s} ... (1)$$

et
$$\gamma_d = \frac{W_s}{V_t} \Rightarrow W_s = \gamma_d. V_t ... (2)$$

et
$$e = \frac{V_V}{V_S} \implies V_S = \frac{V_V}{e} ... (3)$$

(2)et (3)dans (1):
$$\gamma_s = \frac{\gamma_d. V_t}{\frac{V_v}{e}} = \frac{\gamma_d. e(V_v + V_s)}{V_V} = \gamma_d. e(1 + \frac{1}{e})$$

Donc :
$$\gamma_s = \gamma_d(e+1)$$