
 



LARBI BEN MHIDI-OUM EL BOUAGHI UNIVERSITY 

( 𝟏𝒔𝒕year, (st & Eng)     Analysis 01-Final Exam      17/01/2026((Duration : 1.30 min) 

Exercise1 : (6pts) :  
a) Let A be the set defined by :            𝑨 = ቄ𝟑 +

𝟏

𝒏
  ,   ∀𝒏 ∈ ℕ∗ቅ 

  1-Prove that 𝑨 is bounded, )محدودة(    

  2-Prove that 𝒔𝒖𝒑(𝑨) = 𝟒 and 𝒊𝒏𝒇(𝑨) = 𝟑, then determine max(𝑨) and min(𝑨) if they exist. 

b)-Solve the following absolute value inequality:  𝒇𝒐𝒓  𝒙 ∈ ℝ 

|𝒙 − 𝟏| ≤ 𝟐𝒙 − 𝟏 

Exercise 2(5pts) : let ( 𝒖𝒏)𝒏∈ℕ  be the sequence defined ∀𝒏 ∈ ℕ by : 

 𝒖𝒏 =
𝒏

𝒏 + 𝟏
 𝒔𝒊𝒏 ቀ

𝒏𝝅

𝟐
ቁ 

  1-Compute   𝒖𝟒𝒏  and   𝒖𝟒𝒏ା𝟏. 

  2-Deduce that  ( 𝒖𝒏)𝒏∈ℕ   is a divergent sequence.   )متتالية متباعدة( 

Exercise 3(6pts) :     Let 𝒇  be the function defined by:  

𝒇(𝒙) = ቐ

𝒔𝒊𝒏(𝒙 − 𝟏)

𝒙𝟐 − 𝟏
      𝒊𝒇 𝒙 < 𝟏

√𝒙 + 𝟏        𝒊𝒇  𝒙 ≥ 𝟏

      ,     

1- Evaluate  𝒍𝒊𝒎𝒙→𝟏
𝒔𝒊𝒏(𝒙ି𝟏)

𝒙𝟐ି𝟏
( 𝒖𝒔𝒊𝒏𝒈 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔)( الدوال المكافئة  )  

2- Study the continuity )الاستمرار (    and differentiability )  قابلية الاشتقاق(  of the 

function 𝒇 at  𝒙𝟎 = 𝟏 

3- Prove that :                ∀𝒙 > 𝟎,   √𝒙 + 𝟏 <
𝒙

𝟐
+ 𝟏 

                    (Using Mean Value Theorem)(التزايدات المنتهية)  

Exercise4 (Course): (3pts) : Justify the following results: )برر النتائج التالية(   
 
    a-       [𝒙𝒏] ≠ [𝒙]𝒏 , 𝒇𝒐𝒓 𝒂𝒍𝒍  𝒙 ∈ ℝ    
    b-       ∀𝒙 ∈ ℝ/ℤ ,       [𝒙] +  [−𝒙] = −𝟏.  

    c-       𝐯𝐧 =
𝟑𝐧

𝟑𝐧ା𝟏
 , ∀𝒏 ∈ ℕ   𝐢𝐬 𝐚 𝐬𝐮𝐛𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞 (جزئية او مستخرجة)𝐨𝐟 𝐮𝐧 =

𝐧

𝐧ା𝟏
 , ∀𝒏 ∈ ℕ 

    d-       𝑖𝑓   𝐥𝐢𝐦𝒏→ା∞ 𝒖𝒏 = 𝑳( 𝒖𝒏 is CV) ,   then   𝑢௡  is 𝐛𝐨𝐮𝐧𝐝𝐞𝐝  (محدودة)   

    e-         ∫
𝟏

𝒙ି𝟏
𝒅𝒙

𝟐

𝟎
≠ [𝒍𝒏|𝒙 − 𝟏|]𝟎

𝟐                                                        

    Good luck 

 



Final Exam Solutions (Analysis 01 ) Marks 

Exercise 1 : (6p) :   

a) Let:           𝑨 = ቄ𝟑 +
𝟏

𝒏
  ,   ∀𝒏 ∈ ℕ∗ቅ 

We have ; 𝒏 ≥ 𝟏 ⇒ 𝟎 <
𝟏

𝒏
≤ 𝟏 

⇒ 𝟑 < 𝟑 +
𝟏

𝒏
≤ 𝟒 

⇒ 𝟒 𝒊𝒔 𝒂𝒏 𝒖𝒑𝒑𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 𝒂𝒏𝒅 𝟑𝒊𝒔 𝒂 𝒍𝒐𝒘𝒆𝒓 𝒃𝒐𝒖𝒏𝒅 
So A is bounded,   𝒔𝒖𝒑𝑨 𝒂𝒏𝒅  𝒊𝒏𝒇𝑨  exist 

𝟒 ∈  𝑨(𝒃𝒆𝒄𝒂𝒖𝒔𝒆  𝐈𝐟 𝒏 = 𝟏 , 𝟑 +
𝟏

𝒏
= 𝟒) 

So:     𝒎𝒂𝒙𝑨 = 𝒔𝒖𝒑𝑨 = 𝟒 

But: 𝟑 ∉  𝑨(𝒃𝒆𝒄𝒂𝒖𝒔𝒆:  𝐈𝐟  𝟑 +
𝟏

𝒏
= 𝟑, 𝒕𝒉𝒆𝒏  

𝟏

𝒏
= 𝟎(𝑰𝒕ᇱ𝒔 𝒂 𝒄𝒐𝒏𝒕𝒓𝒂𝒅𝒊𝒄𝒕𝒊𝒐𝒏) 

We must prove that :    𝒊𝒏𝒇𝑨 = 𝟑. 

By definition we have: 

𝟑 = 𝒊𝒏𝒇 𝑨  ⇔ ൝
∀𝒂 ∈ 𝑨,   𝒂 ≥ 𝟑 

⋀  
∀𝜺 > 0, ∃𝒂 ∈ 𝑨,   𝒂 < 3 + 𝜀

 

⇔ ൞
∀𝒏 ∈ ℕ∗,   𝟑 +

𝟏

𝒏
> 𝟑(𝒑𝒓𝒐𝒗𝒆𝒅)  

∀𝜺 > 0, ∃𝒏 ∈ ℕ∗,   𝟑 +
𝟏

𝒏
< 3 + 𝜀

  

Let :   𝜺 > 0 

𝟑 +
𝟏

𝒏
< 𝟑 + 𝜺 ⟺ 𝒏 >

𝟏
 𝜺

 

By taking:  𝒏 = ቂ
𝟏

 𝜺
ቃ + 𝟏 ∈ ℕ∗ 

We obtain:  ∀𝜺 > 0, ∃𝒏 = ቂ
𝟏

 𝜺
ቃ + 𝟏 ∈ ℕ∗,   𝒏 >

𝟏

 𝜺
⟺ 𝟑 +

𝟏

𝒏
< 3 + 𝜀 

Therefore: 𝒊𝒏𝒇𝑨 = 𝟑.  

 But  𝒎𝒊𝒏𝑨  does not exist because  𝟑 ∉  𝑨  

 

b) 

|𝒙 − 𝟏| ≤ 𝟐𝒙 − 𝟏 

⇔ −𝟐𝒙 + 𝟏 ≤ 𝒙 − 𝟏 ≤ 𝟐𝒙 − 𝟏 
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⇔ ൝
𝒙 − 𝟏 ≤ 𝟐𝒙 − 𝟏 

 ⋀
−𝟐𝒙 + 𝟏 ≤ 𝒙 − 𝟏

  ⇔ ൞

𝒙 ≥ 𝟎 
 ⋀

𝒙 ≥
𝟐

𝟑

  

So:   𝑺 = ቂ
𝟐

𝟑
, +∞ቂ 

Exercise 2: (5p) 

𝒍𝒆𝒕:     𝒖𝒏 =
𝒏

𝒏 + 𝟏
 𝒔𝒊𝒏 ቀ

𝒏𝝅

𝟐
ቁ 

       𝒖𝟒𝒏   =
𝟒𝒏

𝟒𝒏ା𝟏
 𝒔𝒊𝒏 ቀ

𝟒𝒏𝝅

𝟐
ቁ =

𝟒𝒏

𝟒𝒏ା𝟏
 𝒔𝒊𝒏(𝟐𝒏𝝅) = 𝟎 

 𝒖𝟒𝒏ା𝟏 =
𝟒𝒏 + 𝟏

𝟒𝒏 + 𝟐
 𝒔𝒊𝒏 ൬

(𝟒𝒏 + 𝟏)𝝅

𝟐
൰ =

𝟒𝒏 + 𝟏

𝟒𝒏 + 𝟐
 𝒔𝒊𝒏 ቀ𝟐𝒏𝝅 +

𝝅

𝟐
ቁ =

𝟒𝒏 + 𝟏

𝟒𝒏 + 𝟐
 

 𝐥𝐢𝐦𝒏→ା∞ 𝒖𝟒𝒏 = 𝟎 

 𝐥𝐢𝐦𝒏→ା∞ 𝒖𝟒𝒏ା𝟏 = 𝐥𝐢𝐦𝒏→ା∞
𝟒𝒏ା𝟏

𝟒𝒏ା𝟐
= 𝟏  

𝒔𝒊𝒏𝒄𝒆 𝒕𝒉𝒆  𝐭𝐰𝐨 𝐬𝐮𝐛𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐬 𝐨𝐟 (𝒖𝒏) Converge to different limits, 
 (𝒖𝒏) a divergent sequence . 

Exercise 3 (6p)  : 

𝒇(𝒙) = ቐ

𝒔𝒊𝒏(𝒙 − 𝟏)

𝒙𝟐 − 𝟏
      𝒊𝒇 𝒙 < 𝟏

√𝒙 + 𝟏        𝒊𝒇  𝒙 ≥ 𝟏

  

1) 𝒔𝒊𝒏(𝒙 − 𝟏) ∼ 𝒙 − 𝟏 𝒂𝒔 𝒙 ↝ 𝟏 because : 𝐥𝐢𝐦
𝒙→𝟏

 
𝒔𝒊𝒏(𝒙−𝟏)

𝒙−𝟏
= 𝐥𝐢𝐦

𝒕→𝟎
 

𝒔𝒊𝒏(𝒕)

𝒕
= 𝟏 

Then : 𝐥𝐢𝐦
𝒙→𝟏

 
𝒔𝒊𝒏(𝒙−𝟏)

𝒙𝟐−𝟏
= 𝐥𝐢𝐦

𝒙→𝟏
 

𝒙−𝟏

𝒙𝟐−𝟏
= 𝐥𝐢𝐦

𝒙→𝟏
 

𝒙−𝟏

(𝒙−𝟏)(𝒙+𝟏)
=

𝟏

𝟐
 

2)  

Continuity at  𝒙𝟎 = 𝟏 

𝐥𝐢𝐦
𝒙→ಭ𝟏

𝒇(𝒙) = 𝐥𝐢𝐦
𝒙→ಭ𝟏

√𝒙 + 𝟏  = √𝟐  =  𝒇(𝟏) 

𝐥𝐢𝐦
𝒙→ಬ𝟏

𝒇(𝒙) = 𝐥𝐢𝐦
𝒙→ಬ𝟏

𝒔𝒊𝒏(𝒙 − 𝟏)

𝒙𝟐 − 𝟏
=

𝟏

𝟐
≠  𝒇(𝟏) 

Then 𝒇 is not continuous at 𝒙𝟎 = 𝟏 

Differentiability at  𝒙𝟎 = 𝟏 

- If 𝒇 is differentiable at 𝒙𝟎 then 𝒇 is continuous at 𝒙𝟎 
- If 𝒇 is not continuous at 𝒙𝟎 = 𝟏 then 𝒇 is not differentiable at 𝒙𝟎 = 𝟏  
-  

3) By taking:  ∀𝒙 > 𝟎 

ቐ
𝒈(𝒙) = √𝒙 + 𝟏 

     [𝒂, 𝒃] =  [𝟎, 𝒙]    
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1. 𝒈(𝒙)) is continuous on ൣ– 𝟏, +∞ൣ ⇒  𝒈(𝒙)) is continuous on [𝟎, 𝒙] 

2. 𝒈(𝒙)is differentiable on ൧– 𝟏, +∞ൣ ⇒  𝒈(𝒙)is differentiable on ]𝟎, 𝒙[ 

Using Mean Value Theorem: 

∃𝒄 ∈ ]𝑎, 𝑏[: 𝒈(𝒃) − 𝒈(𝒂) = 𝒈′(𝒄)(𝒃 − 𝒂) 

∃𝒄 ∈ ]𝟎, 𝒙[: 𝒈(𝒙) − 𝒈(𝟎) = 𝒙𝒈′(𝒄) 

First we obtain: 

∃𝒄 ∈ ]𝟎, 𝒙[: √𝒙 + 𝟏 = 𝟏 +
𝒙

𝟐√𝑪 + 𝟏
 

And: 

𝟎 < 𝑪 < 𝒙 ⇒ 𝟏 < √𝑪 + 𝟏 < √𝒙 + 𝟏 ⇒ 𝟏 +
𝒙

𝟐√𝑪 + 𝟏
<

𝒙

𝟐
+ 𝟏 

   Therefore:      ∀𝒙 > 𝟎,   √𝒙 + 𝟏 <
𝒙

𝟐
+ 𝟏 

 Exercise4 (Course): (3pts) :  
   [𝒙𝒏] ≠ [𝒙]𝒏 , 𝒇𝒐𝒓 𝒂𝒍𝒍  𝒙 ∈ ℝ   . 

Example: if 𝒙 = √𝟑  , 𝒏 = 𝟐 
  [𝒙𝒏] = 𝟑 ≠ [𝒙]𝒏 = 𝟏 

 ∀𝒙 ∈ ℝ/ℤ ,       [𝒙] +  [−𝒙] = −𝟏. 

Let: [𝒙] = 𝒌 ⇒  𝒌 < 𝒙 < 𝒌 + 𝟏 ⇒  −𝒌 − 𝟏 < −𝒙 < −𝒌 ⇒ [−𝒙] = −𝒌 − 𝟏 

So: [𝒙] + [−𝒙] = 𝒌 − 𝒌 − 𝟏 = −𝟏 

 𝐯𝐧 =
𝟑𝐧

𝟑𝐧ା𝟏
 𝐢𝐬 𝐚 𝐬𝐮𝐛𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐬 (جزئية او مستخرجة)𝐟𝐫𝐨𝐦 𝐮𝐧 =

𝐧

𝐧ା𝟏
 

Let: 𝝋(𝒏) = 𝟑𝒏  (𝝋: ℕ → ℕ, 𝒂𝒏𝒅 𝝋 𝒊𝒔 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈) 

So: 𝐮𝝋(𝒏) = 𝐮𝟑𝐧 =
𝟑𝐧

𝟑𝐧ା𝟏
= 𝐯𝐧 𝐢𝐬 𝐚 𝐬𝐮𝐛𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐬 𝐨𝐟( 𝒖𝒏) 

 𝒊𝒇 𝐥𝐢𝐦𝒏→ାஶ 𝒖𝒏 = 𝑳  𝐭𝐡𝐞𝐧 𝒖𝒏𝐢𝐬 𝐛𝐨𝐮𝐧𝐝𝐞𝐝  (محدودة)   
 

         𝐥𝐢𝐦𝒏→ାஶ 𝒖𝒏 = 𝑳 ⇔ (∀𝜺 > 0, ∃𝑵(𝜺) ∈ ℕ, ∀𝒏 ∈ ℕ: 𝒏 ≥ 𝑁 ⇒ |𝒖𝒏 − 𝑳| < 𝜺) 

     ⇒ −𝜺 < 𝒖𝒏 − 𝑳 < 𝜺 ⇒ 𝑳 − 𝜺 < 𝒖𝒏 < 𝑳 + 𝜺 ⇒  𝒖𝒏𝐢𝐬 𝐛𝐨𝐮𝐧𝐝𝐞𝐝 (𝑳 ± 𝜺 ∈  ℝ) 

 ∫
𝟏

𝒙ି𝟏
𝒅𝒙

𝟐

𝟎
≠ [𝒍𝒏|𝒙 − 𝟏|]𝟎

𝟐 

Because 𝒇(𝒙) =
𝟏

𝒙ି𝟏
 is not continuous on [𝟎, 𝟐] 
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Y=j{x) can be~oderately preci~9 .1+ ur_u:. 
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