

كلية العلوم الدقيقة و علوم الطبيعة و الحياة
 جامعة العربي بن مهديي أم البوادي
 قسم الرياضيات و الإعلام الآلي
 مدة الاختبار: ساعة و نصف
تصحيح اختبار في مقياس: الانجليزية

السؤال الأول: الكتابة الحرفة للعبارات الرياضياتية حرفيًا باللغة الإنجليزية:

1. $17^3 + \frac{1}{2} - \left(\frac{5}{34} \times 10^{-3} - 0.067 \times \frac{26}{9} \right)$

Seventeen power of three plus one half minus five thirty-fourths times ten power of minus three minus nought point zero six seven times twenty six over nine in brackets.

2. $\left(\frac{81.59 - \sqrt[5]{32}}{(6! - \pi) - \cosh(x^2)} \right)$

Eighty-one point five nine minus fifth root of thirty-one over six factorial minus pie in brackets minus hyperbolic cosine x squared.

3. $M_{ij}^k = \sum_{j=1}^n a_{ij} x^j + \prod_{i=0}^{+\infty} \binom{n}{i} y^{n-i}$

M upper k lower ij equal sum of a ij times x to the j for j from one to n plus the product of n over i times y to the n minus i for i from zero to infinity.

4. $x \in [1, +\infty[\wedge y \geq 2 \Rightarrow x + y > 2.5$

If x in the half open interval 1 plus infinity and y greater than or equal two so x plus y greater than two point five.

5. $\forall x \in \mathbb{R}, \exists y \in \mathbb{Q}: |x - y| < \frac{2}{3}$

For every real number x there exists a rational number y such that absolute value of x minus y is smaller than two thirds.

6. $\iint_S h(x, y) dx dy$

Double integral over S of h of x y dx dy.

7. $\int_0^T u'(t) v^{(3)}(t) dt$

Integral from zero to T of u prime times the third derivative of v dt.

8. $\lim_{x \rightarrow 1} g(x) = 4$

The limit of g of x as x tends to one is equal to four.

9. $\overline{7 + 9i} = 7 - 9i$

The complex conjugate of seven minus nine i equals seven plus nine i.

10. $\forall x \notin A \cap B$

For each x is not in the intersection of A and B.

$$11. \nexists x \in A \cup B: \frac{d^2f}{dx^2} > 0$$

There is no x in the union of A and B such that the second partial derivative of f by x is positive. 1

السؤال الثاني: ترجمة النص التالي إلى اللغة الانجليزية في نص رياضي بحث.

* لتكن E نقطة تقاطع قطر المستطيل $ABCD$. المستقيمان (AB) و (CD) متوازيان. إذا نجد عدة زوايا حادة، قائمة و منفرجة. ليكن T مماس الدائرة التي مركزها E و نصف قطرها EA . و عليه المماس T عمودي على (EA) . مركز ثقل أي مثلث - مرجح - هي نقطة تقاطع المستقيمات الثلاثة التي تمر برأس المثلث و منتصف القطعة المستقيمة المقابلة.

Let the point E be the intersection of the diagonals of the rectangle $ABCD$. The lines (AB) and (CD) are parallel. so , we obtain several acute angles, right angles and obtuse angles. Let T the tangent line of the circle with the centre E and radii (EA) . T is orthogonal to (EA) . The centre of gravity (barycentre) of any triangle is the point of intersection of three lines through each vertex and the midpoint of the opposite side.

* ليكن P متوازي المستطيلات. علاقه أولر تأكده انه: $v-e+f=2$

حيث v هو عدد الرؤوس، e هو عدد الأحرف و f هو عدد الوجوه.

Let P be a convex polyhedron. Euler's formula asserts that $v-e+f=2$ such that v the number of vertices, e of edges and f of faces.

* نقول أن العدد الطبيعي n الأكبر من 1 أولي إذا لم نستطع كتابته على شكل جداء لعددين طبيعيين a و b كلاهما أكبر من الواحد.

An integer n greater than one is a prime if it cannot be written as a product of two integers a,b greater than one.

* لتكن a, b أعداد طبيعية موجبة. نستطيع قسمة b بواسطة a حيث نسمي a بالقاسم و q حاصل القسمة و r الباقي.

Let a and b are arbitrary positive integers, we can derive b by a , such a is calling divisor, q is the quotient and r the reminder.

* القاسم المشترك الأكبر للعددين. و المضاعف المشترك الأصغر.

Greatest common divisor and smallest common multiple

* المصفوفة اليعقوبية لزوجين من الدوال

The Jacobian matrix of pair of functions

كثير حدود درجة $n > 1$ ذات معاملات مركبة يملك n حل. إذا كانت المعاملات حقيقة باستعمال المحدد نجد 3 حالات. حل مضاعف، حلين مختلفين حقيقيين و حلين متراافقين.

A polynomial equation of degree n greater than one with complex coefficients has n solutions. If all coefficients a,b and c are real, then we get three cases: Double solution, both real solutions and complex conjugates solutions.