

Department of MI, Faculty of SENV, University of Oum El Bouaghi

Final exam of the third semester in Alg 3

Date: January 14, 2026, duration 1h:30

Exorcise 1

1. Let E be a \mathbb{R} -vector space of dimension n and $f \in l(E)$ an endomorphism. Prove that the vector lines invariant under f are the 1-dimensional vector spaces of the form $\ker(f - \lambda I)$ for some $\lambda \in \mathbb{R}$. (1p)
2. Deduce that λ is an eigenvalue of f . (0, 5p)
3. Let

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 \\ 2 & -1 & -1 & 0 \\ -4 & 4 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Determine all the vector lines invariant under A . (4p)
- b) Prove that A is diagonalizable. (1, 5p)
- c) Deduce the normal Jordan form of A . (0, 5p)
- d) Decompose \mathbb{R}^4 into direct sum of vector lines. (0, 5p)

4. Solve the following differential system: (2, 5p)

$$\begin{cases} x'_1 &= -x_1 + 2x_2 + x_3 \\ x'_2 &= 2x_1 - x_2 - x_3 \\ x'_3 &= -4x_1 + 4x_2 + 3x_3 + x_4 \\ x'_4 &= 2x_4 \end{cases}$$

5. Determine $A^{2026} + A^{-14} + e^A$. (not necessary to calculate P^{-1}). (1, 5p)

Exorcise 2

Let B be a square matrix of order 4 such that $B^3 - 5B^2 + 8B - 4I = 0$ and $\dim \ker(B - 2I) = 2$.

- a) Determine all the possible minimal polynomials and characteristic polynomials of B . (4p)
- b) Write the normal Jordan form of B in each case. (4p)

Solution

Exorcise 1

1. The vector lines invariant under f . Let D be a vector line generated by a vector $v \in D$. Then, $\forall X \in D, \exists \alpha \in \mathbb{R}, X = \alpha v$. that gives

$$f(X) = f(\alpha v) = \alpha f(v) \quad (1)$$

Since D is invariant under f , we have $f(v) \in D$. Thus, there exists $\lambda \in \mathbb{R}$, such that $f(v) = \lambda v$. By replacing this last expression in (1), we get

$$f(X) = \alpha(\lambda v) = (\alpha\lambda)v = (\lambda\alpha)v = \lambda(\alpha v) = \lambda X \quad (2)$$

From (2), we have

$$f(X) - \lambda X = 0 \Rightarrow (f - \lambda I)(X) = 0 \Rightarrow X \in \ker(f - \lambda I)$$

Consequently,

$$D \subset \ker(f - \lambda I)$$

Since $\dim \ker(f - \lambda I) = 1$, then

$$D = \ker(f - \lambda I).$$

2. From Question 1, we have

$$\ker(f - \lambda I) \neq 0 \Leftrightarrow \det(f - \lambda I) = 0 \Leftrightarrow \lambda \text{ is an eigenvalue of } f.$$

3. From Question 2, we have the following:

- a) The determination of the invariant vector lines of A is equivalent to the determination of all the eigenvalues $\lambda \in \mathbb{R}$, for which

$$\dim \ker(A - \lambda I) = 1 \text{ or } \ker(A - \lambda I) \text{ is a direct sum of vector lines.}$$

$$\det(A - \lambda I) = 0 \Rightarrow \det \begin{pmatrix} -1 - \lambda & 2 & 1 & 0 \\ 2 & -1 - \lambda & -1 & 0 \\ -4 & 4 & 3 - \lambda & 1 \\ 0 & 0 & 0 & 2 - \lambda \end{pmatrix} = 0$$

$$(2 - \lambda)(\lambda + 1)(\lambda - 1)^2 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = 1 = \lambda_3, \lambda_4 = -1.$$

Since $\lambda_1 = 2$ and $\lambda_4 = -1$ are of multiplicity 1, then, the geometric multiplicities

$$\dim \ker(A - 2I) = 1 \text{ and } \dim \ker(A + I) = 1$$

Therefore, we have at least two vector lines $D_1 = \dim \ker(A - 2I)$ and $D_2 = \dim \ker(A + I)$. For the eigenvalue $\lambda_2 = 1$, we have to determine $\dim \ker(A - I)$.

$$\begin{pmatrix} -2 & 2 & 1 & 0 \\ 2 & -2 & -1 & 0 \\ -4 & 4 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} -2x + 2y + z = 0 \\ 2x - 2y - z = 0 \\ -4x + 4y + 2z + t = 0 \\ t = 0 \end{cases} \quad (3)$$

The solution of System (3) gives

$$(x, y, z, t) = (x, y, 2x - 2y, 0) = x(1, 0, 2, 0) + y(0, 1, -2, 0)$$

That gives

$$\ker(A - I) = \text{vect}\{(1, 0, 2, 0)\} \oplus \text{vect}\{(0, 1, -2, 0)\},$$

Let $v = (1, 0, 2, 0)$ and $D_3 = \text{vect}\{v\}$. Then, for every $x \in D_3$, there exists $\alpha \in \mathbb{R}$, such that $x = \alpha v$. Since $Av = v$, then $Ax = A\alpha v = \alpha Av = \alpha v \in D_3$, which means that D_3 is invariant under A . Now, let $u = (0, 1, -2, 0)$ and $D_4 = \text{vect}\{u\}$. By the same manner, D_4 is invariant under A . Therefore, we have 4 vector lines invariant under A .

b) From the results in a), we have 4 independent eigenvectors $v_1, v_2 = v, v_3 = u, v_4$ associated to the eigenvalues $\lambda_1 = 2, \lambda_2 = 1 = \lambda_3, \lambda_4 = -1$ of the matrix A respectively, which constitute a basis for \mathbb{R}^4 , then, A is diagonalizable.

c) The normal Jordan form of A : Since A is diagonalizable, then all Jordan blocks of A are of order 1, that gives:

$$P^{-1}AP = J_1(2) \oplus J_1(1) \oplus J_1(1) \oplus J_1(-1) = \begin{pmatrix} 2 & & & \\ & 1 & & \\ & & 1 & \\ & & & -1 \end{pmatrix}.$$

d) Without care of the order,

$$\mathbb{R}^4 = D_1 \oplus D_2 \oplus D_3 \oplus D_4.$$

4. Since A is diagonalizable, then, the general solution of the given differential system is of the form

$$X(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + c_3 e^{\lambda_3 t} v_3 + c_4 e^{\lambda_4 t} v_4 \quad (4)$$

where $v_1 \in \ker(A - 2I) \Rightarrow v_1 = (1, -1, 5, 3)$, $v_4 \in \ker(A + I) \Rightarrow v_4 = (1, -1, 2, 0)$, $v_2 = (1, 0, 2, 0)$, $v_3 = (0, 1, -2, 0) \in \ker(A - I)$.

By replacing the previous results in (4), we get

$$\begin{aligned} X(t) &= c_1 e^{2t} (1, -1, 5, 3) + c_2 e^t (1, 0, 2, 0) + c_3 e^t (0, 1, -2, 0) + c_4 e^{-t} (1, -1, 2, 0) \\ &= (c_2 e^t + c_1 e^{2t} + c_4 e^{-t}, c_3 e^t - c_1 e^{2t} - c_4 e^{-t}, 2c_2 e^t - 2c_3 e^t + 5c_1 e^{2t} + 2c_4 e^{-t}, 3) \end{aligned}$$

5. Calculation of $A^{2026} + A^{-14} + e^A$:

$$\begin{aligned} A^{2026} + A^{-14} + e^A &= P (D^{2026} + D^{-14} + e^D) P^{-1} \\ &= P \begin{pmatrix} 2^{2026} + \frac{1}{2^{14}} + e^2 & & & \\ & 2 + e & & \\ & & 2 + e & \\ & & & 2 + \frac{1}{e} \end{pmatrix} P^{-1}, \end{aligned}$$

where

$$P = \begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ 5 & 2 & -2 & 2 \\ 3 & 0 & 0 & 0 \end{pmatrix}.$$

Exorcise 2

Since $B^3 - 5B^2 + 8B - 4I = 0$ and $\dim \ker(B - 2I) = 2$, then, $\lambda_1 = 2$ is an eigenvalue of B of algebraic multiplicity ≥ 2 .

Let

$$P(X) = X^3 - 5X^2 + 8X - 4 = (X - 2)^2(X - 1)$$

a) i) The minimal polynomial of B :

Since $P(B) = B^3 - 5B^2 + 8B - 4I = 0$, then, the minimal polynomial $m_B(X)$ divides $P(X)$. Thus, we have two possibilities for $m_B(X)$, that are:

$$m_B(X) = (X - 2)^2(X - 1) \text{ or } m_B(X) = (X - 2)(X - 1)$$

ii) Since B is of order 4 and $P(X)$ of order 3 satisfies $P(B) = 0$, then, the characteristic polynomial $C_B(X)$ is of degree 4 and $P(X)$ divides $C_B(X)$. Thus, we get

$$C_B(X) = P(X)(X - 1) = (X - 2)^2(X - 1)^2 \text{ or } P(X)(X - 2) = (X - 2)^3(X - 1)$$

b) Normal Jordan form of B :

- If $C_B(X) = (X - 2)^3(X - 1)$ and $m_B(X) = (X - 2)(X - 1)$, then, the matrix is diagonalizable and thus, $\dim \ker(B - 2I) = 3$, which to be rejected.
- If $C_B(X) = (X - 2)^3(X - 1)$, then, $m_B(X) = (X - 2)^2(X - 1)$, then, the normal Jordan for of B is

$$Q^{-1}BQ = J_2(2) \oplus J_1(2) \oplus J_1(1) = \begin{pmatrix} 2 & 1 & & \\ 0 & 2 & & \\ & & 2 & \\ & & & 1 \end{pmatrix} \quad (5)$$

- If $C_B(X) = (X - 2)^2(X - 1)^2$ and $m_B(X) = (X - 2)(X - 1)$, then, the normal Jordan form is:

$$Q^{-1}BQ = J_1(2) \oplus J_1(2) \oplus J_1(1) \oplus J_1(1) = \begin{pmatrix} 2 & & & \\ & 2 & & \\ & & 1 & \\ & & & 1 \end{pmatrix} \quad (6)$$

- If $C_B(X) = (X - 2)^2 (X - 1)^2$ and $m_B(X) = (X - 2)^2 (X - 1)$, then, the normal Jordan form is:

$$Q^{-1}BQ = J_2(2) \oplus J_1(1) \oplus J_1(1) = \begin{pmatrix} 2 & 1 & & \\ 0 & 2 & & \\ & & 1 & \\ & & & 1 \end{pmatrix},$$

which yields to $\dim \ker(B - 2I) = 1$, which to be rejected.

Conclusion: From (5) and (6), we have two possible normal Jordan forms for B , with

$$C_B(X) = (X - 2)^3 (X - 1), \quad m_B(X) = (X - 2)^2 (X - 1), \quad \dim \ker(B - 2I) = 2$$

or

$$C_B(X) = (X - 2)^2 (X - 1)^2, \quad m_B(X) = (X - 2)(X - 1), \quad \dim \ker(B - 2I) = 2$$