
1

Typical Correction

Exercise n° 1 (5 pts): Given the following array: 2 7 4 9 1 6 3

1. Provide the successive states of the array at the end of each step of the internal loop ‘for’
when i = 6. (1.5 pts)

k=0: 2 7 4 9 1 6 3 k=1: 2 4 7 9 1 6 3 k=2: 2 4 7 9 1 6 3
k=3: 2 4 7 1 9 6 3 k=4: 2 4 7 1 6 9 3 k=5: 2 4 7 1 6 3 9

2. Provide the successive states of the array at the end of each step of the external loop.
(1.5 pts)

i=6: 2 4 7 1 6 3 9 i=5: 2 4 1 6 3 7 9 i=4: 2 1 4 3 6 7 9
i=3: 1 2 3 4 6 7 9 i=2: 1 2 3 4 6 7 9 i=1: 1 2 3 4 6 7 9

3. This bubble sort algorithm continues its iterations even if the array is sorted in the early
iterations. Propose an improvement to this algorithm to allow it to stop as soon as the
array is sorted and explain the time complexity in the best and worst cases. (2 pts)

void ImprouvedBubbleSort (int* t, int n) {

 int i, k; int swapped ;

 for (i = n - 1; i > 0; i--) {

 swapped = 0; // Set the swapped flag to false

 for (k = 0; k < i; k++)

 if (t[k] > t[k + 1]){

swap(&t[k], &t[k + 1]);

swapped = 1; // Set the flag to true if a swap occurred

 }

if (swapped == 0) break;

 }
}

Worst-Case Time Complexity: O(n²)

Best-Case Time Complexity: O(n)

Level: 2nd year “Computer Science”

Module: Algorithmic and Data Structures 3 January 2026

2

Exercise n° 2 (5 pts): Given the following table that represents a binary tree T in triplets
(info, left, right):

5 3 8 23 7 37 13 11 41 19
-1 4 3 -1 -1 9 -1 8 6 -1
-1 5 0 -1 -1 -1 2 1 -1 -1

 Node 0 has info = 5, left = -1 (no left child), and right = -1 (no right child).
 Node 1 has info = 3, left = 4 (index of left child), and right = 5 (index of right child).
 Node 2 has info = 8, left = 3 (index of left child), and right = 0 (index of right child)….

1. Draw the binary tree T. (1.5 pts)

2. Write the C code for the data structure to represent the tree T in this way. (1.5 pts)

typedef struct Node {

 int info;

 int left;

 int right;

} Node;
Node T[10] = {{5, -1, -1}, {3, 4, 5}, {8, 3, 0}, {23, -1, -1}, {7, -1, -1},
{37, 9, -1},{13, -1, 2}, {11, 8, 1}, {41, 6, -1}, {19, -1, -1}};

3. Write a function that returns the number of leaf nodes. (2 pts)

int nberLeafnodes (Node T[], int size) {

 int s=0;

 for (int i = 0; i < size; i++) {

 if (T[i].left = = -1 && T[i].right = = -1)

 s = s+1;

 return s;

}

11

3

23

8 19

7

41

13

5

37

3

Exercise n° 3 (6 pts):

1. Give the result of the three depth-first traversals of the
following binary search tree. (1.5 pts)

In-Order Traversal (Left, Root, Right):
12, 20, 22, 23, 25, 29, 30, 31, 32, 50.

Pre-Order Traversal (Root, Left, Right):
25, 20, 12, 23, 22, 32 ,29, 30, 31, 50.

 Post-Order Traversal (Left, Right, Root):
12, 22, 23, 20, 31, 30, 29, 50, 32, 25.

2. Show the new trees obtained after deleting these nods 22, 29 and 25. (2 pts)

 Deleting 22 Deleting 29 Deleting 29

 Deleting 25

25

32

23

22 30

29

20

12

31

50

25

32

23

30

29

20

12

31

50

25

32

23

22 31

30

20

12 50

29

32

23

22 31

30

20

12 50

23

32

22

30

29

20

12

31

50

4

3. Construct the associated BST in the order of this list:
1, 6, 9, 8, 7, 4, 3, 2, 5 (1 pt)

4. Write a recursive function that compares

 two binary search trees. The function

returns 1 if the two trees are identical

and 0 otherwise. (1.5 pts)

int IdenticalTrees(Node *R1, Node *R2) {

 if (R1 == NULL && R2 == NULL) return 1;

 if (R1 == NULL || R2 == NULL) return 0;

 return ((R1->data == R2->data) && IdentivalTrees(R1->left, R2->left)

 && IdenticalTrees(R1->right, R2->right)); }

Exercise n° 4 (4 pts):

- Give all possible representations of this graph. (2 pts)

Adjacency Matrix Representation:

Adjacency List Representation:

- Give the traversal results of this graph. (2 pts)
 BFS: 1,2,3,4,5,6
 DFS: 1,2,3,4,5,6

 X1 X2 X3 X4 X5 X6
X1 1 1 1 1 0 0
X2 0 1 0 0 0 0
X3 0 0 0 1 0 0
X4 0 0 0 0 1 1
X5 0 0 0 1 0 1
X6 0 0 0 1 0 1

X1

X2

X3

X4

X5

X6

1 2 3 4

2

4

5 6

4 6

4 6

N

N

N

N

N

