

L'arbi Ben M'hidi Oum El Bouaghi university  
Department of mathematics Teacher : SOULA  
University year 2025-2026 Module: Algebra 01  
Time: 1h 30 m

Exam in: 17/01/2026

**Exercise 1. (6 points)**

Prove that by recurrence

a)  $2^n > n^2$  for all  $n \geq 5$ .  
 b)  $n! > 2n$  for all  $n \geq 4$ .

**Exercise 2** (6 points)

Let  $\mathfrak{R}$  be a relation on  $\mathbb{Z}$  defined by:

$x \mathfrak{R} y \Leftrightarrow x + y$  is an even number.

- a) Determine whether  $\mathfrak{R}$  is reflexive.
- b) Determine whether  $\mathfrak{R}$  is symmetric.
- c) Determine whether  $\mathfrak{R}$  is transitive.
- d) Deduce the type of the relation  $\mathfrak{R}$
- e) Determine the equivalence class  $0, 1,$

**Exercise 3. (8 points)**

Let

$$R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$$

with the usual addition and multiplication.

- a) Prove that  $(R, +, \times)$  is a ring.
- b) Is  $(R, +, \times)$  commutative?
- c) Does  $(R, +, \times)$  have a unity element?



So,

$$(n+1)! > 2(n+1)$$

By induction, the inequality holds for all  $n \geq 4$ .....(2 pt)

**Exercise 2** (6 points)

**a) Reflexivity**

For any  $x \in Z$

$$x + x = 2x$$

which is even. Hence,  $x \mathfrak{R} x$  for all  $x$

So,  $\mathfrak{R}$  is reflexive.....(1 pt)

**b) Symmetry**

If  $x \mathfrak{R} y$ , then  $x + y$  is even. Since

$$y + x = x + y,$$

it follows that  $y \mathfrak{R} x$

Therefore,

$\mathfrak{R}$  is symmetric.....(1 pt)

**c) Transitivity**

Assume

$x \mathfrak{R} y$  and  $y \mathfrak{R} z$ . Then:

$x + y$  is even, and  $y + z$  is even.

Adding these two equalities:

$(x + y) + (y + z) = x + z + 2y$  which is even. Hence,

$x + z$  is even, and therefore  $x \mathfrak{R} z$

Thus,

$\mathfrak{R}$  is transitive.....(1 pt)

**d) Conclusion**

Since  $\mathfrak{R}$  is reflexive, symmetric, and transitive,

it is an equivalence relation.....(1 pt)

**e)**

Equivalence class of 0

$$\bar{0} = \{x \in Z \mid x + 0 \text{ is even}\}$$

So,

$$\bar{0} = \{\text{all even integers}\}.....(1 \text{ pt})$$

Equivalence class of 1

$$\bar{1} = \{x \in Z \mid x + 1 \text{ is even}\} = \{x \in Z \mid x \text{ is odd}\}.$$

So,

$$\bar{1} = \{\text{all odd integers}\}.....(1 \text{ pt})$$

**Exercise 3.**

a) Ring axioms

**Closed** under addition and multiplication.....(1 pt)

Addition is **associative** and **commutative**.....(1 pt)

**Additive identity:**

$0 = 0 + 0\sqrt{2}$ .....(1 pt)

**Additive inverse:**

$-(a + b\sqrt{2}) = -a - b\sqrt{2}$ .....(1 pt)

**Multiplication is associative**.....(1 pt)

**Distributive laws hold**.....(1 pt)

Hence,

$R$  is a ring.

b) **Commutativity**.....(1 pt)

Multiplication is commutative since

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (c + d\sqrt{2})(a + b\sqrt{2}).$$

c) **Unity**

The unity element is.....(1 pt)

$$1 = 1 + 0\sqrt{2}.$$