Université Larbi Ben M’Hidi 2025/2026
Faculté des sciences exactes et des sciences de la nature et de la vie Dr. Kouah S.

Examen final - Architecture Distribuée (Master 2)

Questions de Compréhension (4 points)
1. Une application informatique se structure en trois niveaux d’abstraction. Citer ces niveaux.
2. Expliquer pourquoi I’absence d’horloge globale rend nécessaire 'usage de datations logiques.
3. Définir brievement une architecture 3-tiers et préciser le role de chaque tiers.
4. Cocher la/les bonnes réponses :
A. Quel est le role principal d’'un Middleware ?
a) Remplacer le systeme d’exploitation
b) Masquer 'hétérogénéité et la complexité des communications
¢) Stocker les données applicatives
d) Fournir des API de haut niveau aux applications distribuées
B. CORBA / RMI:
a) CORBA est multi-langages via IDL et interopérabilité via IIOP
b) RMI est réservé aux objets Java et s’appuie sur une infrastructure de stubs/skeletons
c) CORBA ne nécessite pas de mécanisme de nommage
d) RMI et CORBA sont des exemples de middleware orientés objets distribués
Exercice 1 (8 points)
On souhaite concevoir une application de gestion des inscriptions universitaires accessible par un grand nombre d’étudiants via
une application mobile. I application doit permettre :
* La saisie des informations personnelles,
* La vérification des regles d’inscription (prérequis, capacité des groupes, ...etc.),
* L’enregistrement sécurisé des données dans une base centralisée.
1. Identifier et justifier le type d’architecture distribuée le plus adapté a cette application.
2. En vous appuyant sur cette architecture, préciser le role de chaque composant de I'architecture.
3. Définir le middleware et expliquer son réle pour maitriser I’hétérogénéité.
4. Justifier le passage vers une architecture n-tiers.

Exercice 2 (8 points)
On souhaite concevoir un systeme distribué « Gestion Comptes » utilisé par des guichets et une application Web. Le systeme
doit gérer des comptes bancaires et supporter un grand nombre de clients simultanés.
e Le client (guichet/Web) permet a un utilisateur de déclencher les opérations : crediter(idCompte, montant),
debiter(idCompte, montant), consulterSolde(idCompte).
e Lalogique métier applique des regles (exemples : montant > 0, solde suffisant pour un débit, plafonds éventuels), puis
sollicite la couche d’accés aux données pour lire/mettre a jour I’état des comptes.
e La persistance assure la gestion des comptes dans une base distante (lecture, création, mise a jour), via un service dédié
exposant des opérations de type chargerCompte, mettreAJourCompte, etc.
Les services sont distribués : le client n’accede pas directement a la base, il invoque un service distant.
La localisation des services n’est pas paramétrée statiquement dans le code : le client obtient une référence vers le service de
comptes via un service de nommage (annuaire), puis invoque les opérations sur la référence obtenue (ookup coté client ;
bind/ rebind cOté serveur).
Hypothése technique : les appels distants reposent sur un mécanisme de type RMI/CORBA, utilisant Stub/Skeleton et des
opérations de marshalling/unmarshalling.
1. Expliquer l'intérét de la séparation interface / implémentation pour ’évolution d’un systéme réparti.
2. Déctire le role du Stub (coté client) et du Skeleton (coté serveur) en mentionnant marshalling /unmarshalling.
3. Dessiner le diagramme de composants UML correspondant a 'architecture, en considérant notamment les éléments
suivants :
o un composant client d’interface utilisateur (ClientlHM) ;
o un composant métier exposant les opérations de comptes (ServiceComptes) ;
o un composant d’acces/persistance des comptes (PersistanceComptes) ;
o un composant d’annuaire (ServiceNommage).
Le diagramme doit faire apparaitre : ports, interfaces fournies/requises (ex. service de comptes, setvice de persistance, setvice
de nommage), et connecteurs entre ports/interfaces.

Corrigé type : Examen final — Architecture Distribuée

Questions de Compréhension (4 points)

1) Trois niveaux d’abstraction d’une application (1Pt)

e Présentation (IHM) : interaction utilisateur, affichage, saisie.

e Logique applicative / métier : régles de gestion, traitements.

e Données / petsistance : stockage, accés BD/fichiers, requétes.

2) Absence d’horloge globale = datations logiques : Dans un systeme distribué, il n’existe pas de temps global parfaitement
synchronisé entre machines. On ne peut donc pas ordonner de maniere fiable des événements a partir d’horodatages physiques.
Les datations/horloges logiques permettent d’assurer un ordre cohérent (ex. causalité) pour raisonner sur “qui a précédé
quoi” (ordonnancement, cohérence, résolution de concurrence). (1Pt)

3) Architecture 3-tiers + réle de chaque tiers (1Pt)

o Tiers Présentation (client) : IHM, collecte des données, envoi requétes.

e Tiers Logique applicative (serveur applicatif) : regles métier, orchestration, sécurité applicative, setvices.

e Tiers Données (serveur BD) : persistance, requétes, transactions/stockage.

4) QCM (1Pt)

A. Réle principal d’'un middleware :

b) Masquer ’hétérogénéité et la complexité des communications (Vrai)

d) Fournir des API de haut niveau aux applications distribuées (Vrai)

B. CORBA / RMI :

a) CORBA multi-langages via IDL + interopérabilité via IIOP (Vrai)

b) RMI réservé aux objets Java + stubs/skeletons (Vrai)

d) RMI et CORBA = middleware orientés objets distribués (Vrai)

Exercice 1 (8 points)
1) Architecture distribuée la plus adaptée : Architecture 3-tiers (mobile — serveur d’application — BD).
Justifications (au moins 2) : (2 Pts)
e Sécurité : la BD n’est pas exposée aux clients ; acces via serveur applicatif.
e Maintenance/évolutivité : régles d’inscription centralisées coté serveur.
e Scalabilité : serveur applicatif répliquable (montée en charge).
2) Role des composants (2 Pts)
e Client mobile (présentation) : formulaires, validation légere, envoi requétes, affichage résultats.
e Serveur applicatif (logique métier) : vérifie prérequis/capacité, applique régles, gére sessions/API, controle d’acces,
orchestre opérations.
e Serveur de données (BD) : stocke étudiants/inscriptions/groupes, exécute lectures/écritures, assure intégrité/persistance.
3) Middleware : définition + réle pour maitriser ’hétérogénéité (2 Pts)
Définition : couche logicielle intermédiaire fournissant des services et API facilitant la communication et I'intégration entre
composants distribués.
Rale :
e Positionnement : entre applications (client/serveur) et OS/réseau.
e Utilité : masque ’hétérogénéité (langages, plateformes), standardise I’échange (appel distant, sérialisation/marshalling),
offre des services (naming, sécurité, etc.).
4) Justifier le passage vers n-tiers (2 Pts)
En 3-tiers, le serveur applicatif peut devenir un goulot d’étranglement (toutes les regles + trafic + validations + acces BD). Le
passage en n-tiers permet de distribuer la logique en services spécialisés (ex. ServiceAuth, Servicelnscriptions, ServiceRegles,
ServicePaiement, etc.), de répliquer les services critiques, et d’améliorer scalabilité, maintenabilité et disponibilité.

Exercice 2 (8 points) — Gestion Comptes
1) Intérét séparation interface / implémentation : (2 Pts)
e Découplage : les clients dépendent d’une interface stable, pas du code interne.
¢ Evolutivité : on peut modifier/remplacer I'implémentation serveur (optimisation, refactorisation, migration BD) sans
impacter les clients tant que le contrat ne change pas.
e Interopérabilité/maintenance : limite les dépendances, facilite versioning, déploiement indépendant.
¢ Robustesse : meilleure gestion des changements (substitution de composants, tolérance a I’évolution).
2) Réle Stub/Skeleton + marshalling/unmarshalling : (3 pts)
Etape 1— Appel c6té client (transparence)
Le client invoque crediter(...) comme un appel “local” sur une référence.
Etape 2 — Stub (c6té client)
Le Stub :

e construit la requéte (identité objet/service + méthode + paramétres),
o réalise le marshalling (encodage/sérialisation des paramétres),
e cnvoie le message via le réseau.
Etape 3 — Skeleton (c6té serveur)
Le Skeleton :
e recoit la requéte,
e fait 'unmarshalling (décodage),
e appelle la méthode réelle de 'implémentation (ServiceComptes).
Etape 4 — Retour résultat / exception
Le serveur renvoie résultat/exception : marshalling coté serveur, transmission, unmarshalling coté client, puis le client recoit la
valeur comme retour d’appel.
3) Diagramme de composants UML : (3 pts)
Composants :
1. ClientIHM (client)
2. ServiceComptes (métier)
3. PertsistanceComptes (DAO/petsistance)
4. ServiceNommage (annuaire)
Exemples de quelques interfaces :
e IComptes : crediter(), debiter(), consulterSolde()
e IPersistanceComptes : chargerCompte(), mettreAJourCompte()
e INommage : lookup(), bind(), rebind()
Exemples de Ports & interfaces fournies/requises :
e ClientlHM
o requiert IComptes (port pComptesReq)
o requiert INommage (port pNamingReq)
e ServiceComptes
o fournit IComptes (port pComptesProv)
o requiert IPersistanceComptes (port pPersistReq)
o (optionnel) requiert INommage pour publier/renouveler sa référence
e PersistanceComptes
o fournit IPersistanceComptes (port pPersistProv)
e ServiceNommage
o fournit INommage (port pNamingProv)
Connecteurs :
e Connecteur 1 : ClientlHM.pNamingReq — ServiceNommage.pNamingProv
e Connecteur 2 : ClientlHM.pComptesReq — ServiceComptes.pComptesProv
e Connecteur 3 : ServiceComptes.pPersistReq — PersistanceComptes.pPersistProv
o (optionnel) Connecteur 4 : ServiceComptes — ServiceNommage (bind/rebind)

