

Exam, January 2026

Exercise 1(4 pts). Let $(E; \|\cdot\|_E)$ and $(F; \|\cdot\|_F)$ be two Banach spaces.
 Let $T : E \rightarrow F$ a linear operator satisfies (1)

$$\forall x_n \in E : \text{if } x_n \rightarrow x \text{ and } Tx_n \rightarrow y \Rightarrow y = Tx. \quad (1)$$

1. Prove that $(E; \|\cdot\|_T) : \|x\|_T = \|x\|_E + \|Tx\|_F$ is a Banach space and deduce that T is continuous.
2. Let consider $E = C^1([0, 1]); \mathbb{R}$) and $F = C^0([0, 1]); \mathbb{R}$) with the norm $\|\cdot\|_\infty$.
 Prove that T satisfies (1) but T is not continuous. ($f_n(x) = x^n$)
3. Why do we get two different results ?

Exercice 2(9 pts). Let be $(E, \|\cdot\|)$ a \mathbb{K} -normed space , $0 \neq \phi : E \rightarrow \mathbb{K}$ a linear form and $H = \ker \phi$.

1. Prove that if ϕ is continuous we get :

a)

$$\frac{|\phi(x)|}{\|\phi\|_{E^*}} \leq d(x, H).$$

b). Forall $(b, x) \in E \setminus H \times E$, (remarking that $x = \frac{\phi(x)}{\phi(b)}b + x - \frac{\phi(x)}{\phi(b)}b$,) there exist $(x_n) \subset E \setminus H$, $(t_n) \subset \mathbb{R}$ and $(h_n) \subset H$ such that $\|x_n\| = 1$ and $x = h_n + t_n x_n$.
 Prove that for all $x \in E$, we have

$$\frac{|\phi(x)|}{\|\phi\|_{E^*}} = d(x, H).$$

2. Let be $E = \ell_0$ be the vector space of real sequences having a finite number of non-zero terms $x = (x_n)_{n \in \mathbb{N}}$, and $\phi(x) = \sum_{i=0}^{\infty} \frac{1}{2^i} x_i$. Show in which case we have : for all $x \in E \setminus H$ there exists $h \in H : \|x - h\| = d(x, H)$.

- a). If E is equipped by the norm $\|x\|_\infty$.
- b). If E is equipped by the norm $\|x\|_2 = (\sum_{i=0}^{\infty} |x_i|^2)^{1/2}$.

Exercice 3(9 pts). Let be $H = (L^2([0, 1]); \mathbb{R})$ is NVS with the norm $\|\cdot\|_2$.

1. Prove that H is an Hilbert space.
2. Let be $F = \mathbb{R}_2[X]$ the space of real polynomials on $[0, 1]$ of degree ≤ 2 .
Let P_F be the orthogonal projection of H onto F . Show that
 $\forall f \in H, \inf_{a_i} \left\{ \int_0^1 |f(x) - \sum_{i=0}^2 a_i x^i|^2 dx; a_i \in \mathbb{R} \right\}$ is attained at $y = P_F(f)$.
3. We now assume that $H = L^2(\mathbb{N}; \mathbb{R}) := (\ell^2; \mathbb{R})$. For n is a fixed integer,

- 3.1. We define ϕ by

$$\forall x \in H, \phi(x) = \sum_{i=0}^n \frac{x_i}{2^i},$$

Show that ϕ is continuous and calculate $\|\phi\|_{H^*}$ in two different ways.

- 3.2. Let be

$$M = \left\{ x \in H; \sum_{i=0}^n \frac{x_i}{2^i} = 0 \right\}$$

Show that M has a closed complement sub space to be determined.

- 3.3. Give the distance from the element $(1, 0, 1, \dots, 0)$ to M .

Note : The grade for question 1 of exercise 1 is considered the grade for the individual work.

22/20

Ex 1:

Let (x_n) be a Cauchy sequence in $(E, \|\cdot\|_E)$. Then $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \Rightarrow \|\alpha_n - \alpha_m\|_E < \epsilon$

Then $\|\alpha_n - \alpha_m\|_E + \|\alpha_m - \alpha_N\|_E \leq \epsilon \Rightarrow \|\alpha_n - \alpha_N\|_E \leq \epsilon$ and $\|\alpha_N - \alpha_m\|_E \leq \epsilon$, So

① $\exists (y_n) \in E$ EX: $\alpha_n \rightarrow x$ and $\alpha_m \rightarrow y$ (Because E, F are Banach)

or from ① we get $y = T\alpha \cdot T\alpha_N \cdot \|\alpha_N - \alpha\| \rightarrow \infty \Rightarrow (E, \|\cdot\|_E)$ is a Banach

b) From ①, a) we get E, F are Banach $\Rightarrow (Ex, T, F)$ is a Banach

So if $\alpha_n \xrightarrow{E, \|\cdot\|_E} x \Rightarrow \alpha_n \xrightarrow{F, \|\cdot\|_F} x$

② Let be $y_n = \frac{x}{n\|\alpha\|_E} \xrightarrow{F, \|\cdot\|_F} 0$ $\Rightarrow y_n$ is convergent in $(F, \|\cdot\|_F)$; it is a bounded sequence, then $\forall n \geq 1 \exists C > 0: \frac{\|\alpha\|_E}{n\|\alpha\|_E} \leq C$ (fixed) $\Rightarrow \frac{\|\alpha\|_E}{n\|\alpha\|_E} \leq C$ then $\|\cdot\|_F \leq \|\cdot\|_E$ So $\|\alpha\|_F \leq (C+1)\|\alpha\|_E$ i.e. T is continuous.

③ $\exists T: (Ex, \|\cdot\|_F) \rightarrow (C(S, \mathbb{R}), \|\cdot\|)$ $\|f\|_F = \|f'\|_E$ when T starts from ①

if $f_n \xrightarrow{F, \|\cdot\|_F} f$ and $f'_n \xrightarrow{E, \|\cdot\|_E} f'$ so (From Weierstrass Thm) $f = f'$

but, it is not continuous because $\|f(x)\| = \lim_{n \rightarrow \infty} \|f_n(x)\| \neq \lim_{n \rightarrow \infty} \|f'_n(x)\|$ which means T is not continuous.

④ 3. we get two different result because E and F in this case not Banach.

Ex 19:

③ a) ϕ is continuous then $\|\phi\|_E \leq \infty$ and $\forall x \in E, |\phi(x)| \leq \|\phi\|_E \|\alpha\|_E$

Then $|\phi(x-h)| \leq \|\phi\|_E \|\alpha-h\|_E, \forall (x, h) \in E \times \text{Ker } \phi \Rightarrow \frac{|\phi(x)|}{\|\phi\|_E} \leq \frac{1}{\|\alpha-h\|_E} = d(x, H)$. ①

b) We have $\|\phi\|_E = \sup_{x \in E} |\phi(x)|$

Then $\forall \frac{1}{n} > 0 \exists (b_n) \subset E: \|\alpha_n\|_E = 1$ and $\|\phi\|_E - \frac{1}{n} < |\phi(b_n)|$. ②

In other hand $\forall x \in E, x = \frac{\phi(x)}{\|\phi\|_E} b_n + x - \frac{\phi(x)}{\|\phi\|_E} b_n, b_n \in \frac{\phi(x) - \phi(x)}{\|\phi\|_E} b_n = 0$

then we consider $b_n = \frac{\phi(x)}{\|\phi\|_E} b_n$ and $b_n = 0$ and $t_n = \frac{\phi(x)}{\|\phi\|_E} b_n$ so:

$\forall x \in E, x = t_n b_n + h_n, \|h_n\|_E = 1$ ③

From ② we have $\|\alpha_n - h_n\|_E = \|t_n\|_E = \frac{|\phi(x)|}{\|\phi\|_E} < \frac{1}{\|\phi\|_E}$ ④

Because ϕ is not continuous and $\text{Ker } T = H$ in E (so ϕ is not continuous)

then by letting $n \rightarrow \infty$ we get $\|\alpha_n - h_n\|_E = d(x, H) \leq \frac{|\phi(x)|}{\|\phi\|_E}$ ⑤

From ③ and ⑤ we get $d(x, H) := \frac{|\phi(x)|}{\|\phi\|_E}$ ⑥

3 2/a) E is equipped by $\|\cdot\|_E$.

First we have $|\phi(x)| \leq \|\phi\|_E \left(\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \right) := \|\phi\|_E \cdot 2 \left(1 - \frac{1}{2^{N+1}} \right) \Rightarrow \|\phi\|_E \leq 2 \left(1 - \frac{1}{2^{N+1}} \right)$ ⑦

Then exist $x_0 \in (1, \dots, 1, 0, \dots, 0)$ such that $\|\phi\|_E = 1$ ⑧

Then $\phi(x_0) = \sum_{i=0}^N \frac{1}{2^i} = 2 \left(1 - \frac{1}{2^{N+1}} \right) \Rightarrow \|\phi\|_E = 2 \left(1 - \frac{1}{2^{N+1}} \right)$ ⑨

Then if we suppose that $\exists h \in H: \|x - h\| = d(x, H)$ $\Rightarrow \frac{1}{\|h\|} = \frac{1}{\|\Phi(x)\|} = \max_{h \in H} \frac{1}{\|x - h\|}$ which means that $\frac{1}{\|x - h\|} \leq \frac{1}{\|x - h_0\|}$ $\Rightarrow x - h_0 \perp h$. Contradiction with $x - h_0 \in H$.

3b) If E is equipped by $\|\cdot\|_2$ we have $|\Phi(x)| \leq \left(\sum_{i=0}^n |x_i|^2\right)^{\frac{1}{2}} \leq \left(\sum_{i=0}^n \frac{1}{2^{2i}}\right)^{\frac{1}{2}} \leq c \|x\|_2$ where $c = \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}}\right)^{\frac{1}{2}} \leq \left(\frac{1}{2}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2}}$.

Then $1 + \sqrt{c^2 - 1}$ is closest and convex (Subspace).

So $\exists P_H(x) \in H: (x - P_H(x)) \perp H$ by Projection Theorem.

In some hands $d(x, H) = \inf_{h \in H} \|x - h\| \leq \|x - P_H(x)\|$.

In other hands $\|x - h\|^2 \leq \|x - P_H(x)\|^2 + \|P_H(x) - h\|^2$ (Pythagore).

Then $\forall h \in E \setminus H \exists h \in H: \|x - h\| = \|x - P_H(x)\| = d(x, H)$.

Ex 9

① If $(H, \|\cdot\|)$ is a Hilbert space. If $\|\cdot\|_2$ derive from the parallelogram equality in \mathbb{R}^2 : $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$.

② If $(\mathbb{R}^2, \|\cdot\|_2)$ we have $\|x+y\|^2 = \sum_{i=1}^2 (x_i + y_i)^2 + \|x-y\|^2 = \sum_{i=1}^2 (x_i - y_i)^2 = 2(\|x\|^2 + \|y\|^2)$.

10 H is a Hilbert space.

② If $F = \mathbb{R}[x]$ is a subspace of dimension 8. Then \mathcal{E} is closed and convex.

Thanks to projection theorem we have.

$\forall f \in H, \exists P_F(y) \in F: d(x, F) = \inf_{f \in F} \|y - f\|^2 \quad \text{if } g(x) = \sum_{i=0}^n a_i x^i$

Then $d(x, F)^2 = \inf_{f \in F} \|y - f\|^2 = \inf_{f \in F} \|f(x) - \sum_{i=0}^n a_i x^i\|^2 = \|y - P_F(y)\|^2$.

③ $\exists \alpha: |\Phi(x)| \leq \|x\|_2^2 \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}}\right)^{\frac{1}{2}} \leq \frac{1}{\sqrt{2}} \|x\|_2$. If no contradiction.

First way. From ① we have $\|\Phi\|_2 \leq \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2}}$: geometric series.

Let $x_0 = \frac{1}{\sqrt{2}} \left(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, 0, \dots, 0\right)$. $\|x_0\|_2 = 1$ and.

$\Phi(x_0) = \frac{1}{\sqrt{2}} \sum_{i=0}^{\infty} \frac{1}{2^{2i}} = \frac{c_0^2}{c_0} = c_0 \Rightarrow \|\Phi(x_0)\|_2 \geq c_0$. Then $\|\Phi\|_2 \geq c_0$.

Second way. Because $(\ell^2, \|\cdot\|)$ is a Hilbert space. Thanks to Riesz representation theorem.

Theorem. We know $\forall \gamma \in \ell^2, \exists \Phi \in (\ell^2)^* \Rightarrow \exists y_\Phi \in \ell^2: \Phi(x) = \langle x, y_\Phi \rangle \Rightarrow \|\Phi\| = \|y_\Phi\|$.

By identification we get $y_\Phi = (1, \frac{1}{2}, \dots, \frac{1}{2^n}, 0, \dots, 0)$.

such that $\|y_\Phi\| = \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}}\right)^{\frac{1}{2}} = \left(\frac{1}{3} (1 + (\frac{1}{4})^{n+1})\right)^{\frac{1}{2}}$.

16 2. We remark that $M = \Phi(\mathcal{E})$ is a closed subspace of ℓ^2 . So it has closed complete unit subspace M^\perp : $d(M^\perp) = 1$, or $\Phi(y_\Phi) \neq 0$. So $M^\perp = \{y_\Phi\}^\perp$.

17 3. Because $\ell^2 = M \oplus M^\perp \in \mathcal{E}$ $\forall x \in \ell^2 \Rightarrow x = P_M(x) + P_{M^\perp}(x) \Rightarrow \langle x, y_\Phi \rangle = \langle P_M(x), y_\Phi \rangle$.

Let $x_0 = (1, 0, 0, 0)$ then $\langle x_0, y_\Phi \rangle = (1 + \frac{1}{4}) = 1 \Rightarrow \|y_\Phi\|^2 \Rightarrow 1 = \frac{5}{4} \|y_\Phi\|^2$.

From 2. we have $d(x, M) = \|x - P_M(x_0)\| = \|x - y_\Phi\| = \frac{5}{4} \|y_\Phi\|^{-1} = \frac{5}{4} \left(\sum_{i=0}^{\infty} \frac{1}{2^{2i}}\right)^{\frac{1}{2}}$.

(5)