Normal Exam Session Solution

Module: Computer Architecture
Academic year : 2025-2026

Exercise 1: Comprehensive Questions (7 points)

1. Comparison of CISC and RISC architectures (1 point)
/_\

CISC (Complex Instruction Set | RI (Reduced Instrirstion Set
Computer) ——~ omputer)

}«nﬁruction Complexity: Complex,/ Instruction Complexity: Shuple,
variable-length instructions (1-15 bytds)|| fixed-length instructions (typically 4

bytes) —
Instruction Length: Variable (myt(l— Instruction Length: Fixed (simpliﬁﬁs O)b
ple formats) decoding)

Registers: Fewer general-purposg red- | Registers: More general-purpose regig-

\ isters (8-32) ters (32-256)
plcal CPI Higher CP1 (475-2.5) due_ Typical CPI: Lower CPI (close to/1.0)
leX instructio ith pipelining

2. Principle of locality (1 point)

The principle of locality states that programs tend to reuse data and instructions that 06
they have used recently. There are two types:
Temporal Locality: Recently accessed items are likely to be accessed again soon. g-

e Example: A loop variable accessed repeatedly
Spatial Locality: Items near recently accessed items are likely to be accessed soon. (O | PR

e Example: Array elements accessed sequentially

3. Compare SRAM and DRAM (1 point)

Aspect SRAM DRAM

Structure 6 transistors (flip-flop) 1 transistor 4 1 capacitor
Speed Fast (1-10 ns access time) | Slow (50-100 ns access time)
Cost Expensive Cheap

Typical Use | Cache memory Main memory (RAM)

@, /g O(g

4. Write-through vs Write-back cache policies (1 point)
Write-through:

e Data is written to both cache and main memory simultaneously <

e Advantage: Simpler implementation, memory always consistent O’
Write-back:

e Data is written only to cache initially; main memory updated when bloc?s replaced

e Advantage: Lower memory traffic, faster writes O (

5. Indirect addressing (1 point)

Why slower than direct addressing: Indirect addressing requires at least two memory
accesses: one to get the address from memory, then another to access the actual data. C);g
Direct addressing needs only one memory access.

Useful applications:

e Pointer-based data structures (linked lists, trees) 0 {
.) r

e Dynamic memory allocation

e Virtual function tables in object-oriented programming

e Callback functions and function pointers

6. Modified vs Pure Harvard architecture (1 point)

Pure Harvard architecture has separate physical memories and buses for instructions <
and data. D/
Modified Harvard architecture (used in most modern computers):

e Separate caches for instructions and data (L1 cache)

e Unified main memory g
e Allows more flexibility and better resource utilization O‘

e Enables self-modifying code when needed

e More cost-effective implementation

7. Pipeline hazards (1 point) (Oone ’Gb?a

Three types of pipeline hazards:

e Structural Hazard: Occurs when hardware resources are insufficient to support O(§
simultaneous execution.

~
— Example: When memory is used for both instruction fetch and data access) 5

in the same cycle /

e Data Hazard: Occurs when instructions depend on data produced by previous
instructions.

— Types: RAW (Read After Write), WAR (Write After Read), WAW (Write
After Write)

e Control Hazard: Occurs due to branches, jumps, or exceptions that change the
instruction flow.

— Example: Branch instructions causing wrong instructions to be fetched

Exercise 2: (7 points)

1. Cache simulation table

Access | Block | Cac e Freqyzﬁc_mount / Action \
1 0 0] 0:1 Miss
2 1 [0, 1] 0:1, 1:1 Miss
3 4 [0, 1, 4] 0:1, 1:1, 4:1 Miss
4 2 1, 4, 2] \ 1:1, 4:1, 2:1 Miss (replace 0 choose oldest)
5 0 [4, 2, 0] 4:1, 2:1, 0:1 Miss (replace 1)
6 1 (2, 0, 1] 2:1, 0:1, 1:1 Miss (replace 4)
7 3 [0, 1, 3] 0:2, 1:2, 3:1 iss (replace 2 - lowest frequency
8 0 [0, 1, 3] 0:3, 1:2, 3:1 Hit
9 1 0, 1, 3] / 0:3, 1:3, 3:1 Hit
10 4 [0, 1, 4] 0:3, 1:3, 4:1 Miks (replace 3 - lowest frequesicy)
11 2 [0, 1, 2] 0:3, 1:3, 2:1 Misg (replace 4 - lowest freqency)
12 3 [0, 1, 3] 3, 1:3, 3: Miss\(replace 2 - lowest fréquency)
Total \Hits: 2/ Misses: A0 \ g

<
f
(

2. Hit rate and miss rate calculation

Total accesses = 12
Hits = 2
Misses = 10

2 S
Hit rate = — = 16, 66% Or
1
Miss rate = £ = 83, 33% 0/ g

3. Advantage of set-associative over direct-mapped cache

Set-associative caches reduce conflict misses compared to direct-mapped caches. In a
direct-mapped cache, each memory block can only go to one specific cache line, causing
thrashing when multiple frequently-used blocks map to the same line. Set-associative
caches allow each block to be placed in any of several lines within a set, reducing such
conflicts and improving hit rates.

4. Number of sets calculation

5. Tag bits calculation

Number of lines =

Number of sets =

Cache size 65536

Line size

Number of lines B

128

Ways

Offset bits = log,(Line size) = log,(128) = 7 bits

Exercise 3: (6 points)

1. Dependencies Identification

— RAW (Read After Write) :

e Instr 2 =+ Instr 1: Instr 2 reads $t1, Instr 1 writes $t1 ©

12
= 57 = 256 sets

0>

Index bits = log, (Number of sets) = log,(256) = 8 bits O|
Tag bits = 32 — (Index bits + Offset bits) =32 — (8 4 7) = 17 bits

e

4

\

p
e Instr 4 - Instr 1: Instr 4 reads $t1, Instr 1 writes $t1 O ‘\

e Instr 4 - Instr 2: Instr 4 reads $t2, Instr 2 writes $t2 Olg

e Instr 5 =+ Instr 3: Instr 5 reads $t6, Instr 3 writes $t6 g lg

— WAR (Write After Read) :

e Instr 3 = Instr 5: Instr 3 reads $t4 in ID stage (C6)

stage (C13)

No WAW (Write After Write) Hazards

2. Pipeline execution diagram with stalls (No Forwarding)

=512 lines O \g
e
05

S

Inst | C1 | C2 | C3 C4 C5 C6 Cc7 C8 C9 C10 C11
1 IF ID | EX | MEM | WB
2 IF 1D ST ST EX MEM | WB
3 IF 1D EX | MEM WB
4 IF ID ST ST ST EX MEM | WB
5 IF ID ST EX | MEM WB

3. Total cycles and IPC calculation

Total cycles = 11

Number of instructions = 5

>
IPC (Instructions Per Cycle) = T 0.454 olg

oS

, Instr 5 writes $t4 in WB 0/§

4. How forwarding reduces stalls

Forwarding (also called bypassing) is a hardware technique used in pipelined processors to
reduce pipeline stalls caused by data hazards especially read-after-write (RAW) hazards.
Forwarding avoids waiting for write-back by sending the result directly from where it is
produced to where it is needed. With forwarding (data bypassing):

e Instr 1 — Instr 2: $t1 available after MEM stage (C4) — forward to Instr 2’s 4
EX stage (C4) — Reduce 2 stalls to 0 | VD

e Instr 1 — Instr 4: $t1 available after MEM stage (C4) — forward to Instr 4’s O zg
EX stage (C6) — Already available when needed (

e Instr 2 — Instr 4: $t2 available after MEM stage (C7) — forward to Instr 4’s 0, 2 S
EX stage (C7) — Reduce 3 stalls to 0 Y

e Instr 3 — Instr 5: $t6 available after EX stage (C5) — forward to Instr 5’s EX Ol 21)
stage (C6) — Reduce 3 stalls to 0

