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Exercise 1 (Theory)

1. Prove that if the function f : Rn → R is strictly convex, then the minimization
problem

inf
x∈Rn

f(x)

admits at most one solution.

2. Give an example of a function f : R → R which is not coercive but still admits a
global minimum.

3. Give an example of a function for which the first-order condition is satisfied at a
point that is not a local minimum.

4. What is the rate of convergence? How is it related to the order of convergence?

5. Define a descent direction. Give an example in R2.

Exercise 2 (Critical Points)
Consider the function

f(x, y) = x3 + 2xy − 2x2 − 2y2.

1. Find the critical points of f(x, y).

2. Determine the nature of each critical point.

3. Are the extremums local or global? Justify your answer.

4. Are the extremums unique? Justify your answer.

Exercise 3 (Gradient Method)
Consider the function

f(x, y) = 2x2 + 3y2 − 2xy + 5x− 6.

(a) Compute the gradient ∇f(x, y).

(b) Determine a descent direction at x0 = (1, 2).

(c) Using a fixed step size β = 0.1, compute the iterations x1 and x2 of the gradient
method.
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Exercise 1 (Theory) – 6 marks

1. Strictly convex function has at most one minimizer (2 marks):

If f is strictly convex and x1 6= x2 are minimizers, then for λ ∈ (0, 1):

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2) = f(x1),

which contradicts that x1 and x2 are minimizers. Hence, the minimizer is unique.

2. Non-coercive function with global minimum (1 mark): Example: f(x) =
x2/(1 + x2). Reason: f is bounded below by 0, attains min f(x) = 0 at x = 0, but
lim|x|→∞ f(x) = 1 so f is not coercive.

3. First-order condition satisfied but not a minimum (1 mark): Example:
f(x) = x3 at x = 0. Reason: f ′(0) = 0, but x = 0 is an inflection point, not a local
minimum.

4. Rate vs Order of Convergence (1 mark): Rate r measures how fast |xk+1 −
x∗| ≈ r|xk−x∗|p, where p is the order of convergence. Higher p faster convergence.

5. Descent direction (1 mark): Vector d is a descent direction at x if ∇f(x)Td < 0.
Example in R2: f(x, y) = x2 + y2, at (1, 1), d = (−1,−1) is a descent direction
because ∇f(1, 1) = (2, 2) and (2, 2) · (−1,−1) = −4 < 0.

Exercise 2 (Critical Points) – 7 marks
Function: f(x, y) = x3 + 2xy − 2x2 − 2y2

1. Critical points (2 marks):

fx = 3x2 + 2y − 4x = 0 , fy = 2x− 4y = 0⇒ y = x/2

Substitute y = x/2 into fx = 0:

3x2 + 2(x/2)− 4x = 3x2 − 3x = 0⇒ x = 0 or x = 1

Then y = 0 or y = 1/2. Critical points: (0, 0) and (1, 1/2)
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2. Nature of each point (2 marks): Hessian: H =

(
6x− 4 2

2 −4

)
At (0, 0): H =(

−4 2
2 −4

)
, detH = 12 > 0, trace= −8 < 0 ⇒ local maximum. At (1, 1/2):

H =

(
2 2
2 −4

)
, detH = −12 < 0⇒ saddle point.

3. Local/Global extrema (1.5 mark): (0, 0) is local maximum, (1, 1/2) is saddle
no global minimum or maximum.

4. Uniqueness of extrema (1.5 mark): Maximum is unique at (0, 0); no global
minimum exists.

Exercise 3 (Gradient Method) – 7 marks
Function: f(x, y) = 2x2 + 3y2 − 2xy + 5x− 6

(a) Gradient (1 marks):

∇f =

(
4x− 2y + 5

6y − 2x

)
(b) Descent direction at (1, 2) (2 mark):

∇f(1, 2) =

(
4− 4 + 5

12− 2

)
=

(
5
10

)
A descent direction: d = −∇f(1, 2) = (−5,−10)

(c) Iterations with β = 0.1 (4 marks):

x1 = x0 + βd = (1, 2) + 0.1(−5,−10) = (0.5, 1)

∇f(x1) =

(
4 ∗ 0.5− 2 ∗ 1 + 5

6 ∗ 1− 2 ∗ 0.5

)
=

(
4
5

)
x2 = x1 + β(−∇f(x1)) = (0.5, 1) + 0.1(−4,−5) = (0.1, 0.5)
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