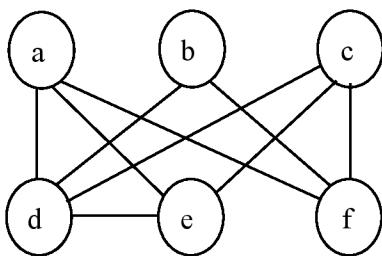


Graph Theory Exam

Exercise n°=1 : (4 pts)

Let be the following graph G :



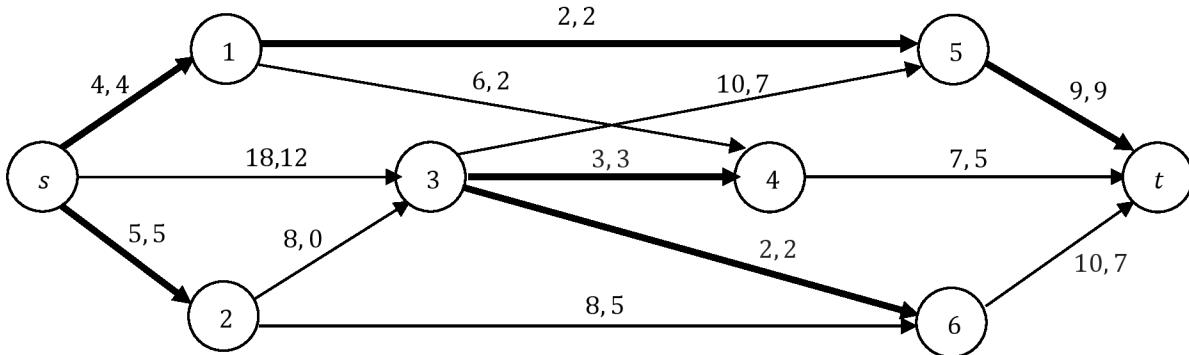
Determine (justifying your answer) whether the graph G is a planar graph. (1 pt)

If yes,

- give its planar representation, (0.5 pt)
- determine the number of faces and the degree of each face, (1.5 pts)
- and give the corresponding dual graph G^* . (1 pt)

Exercise n°=2 : (7.25 pts)

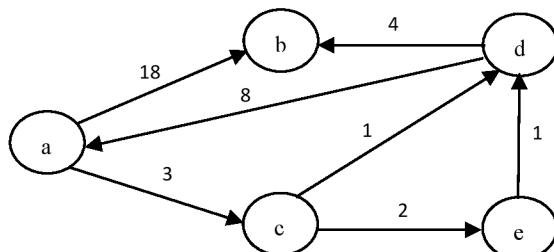
Let f be the following flow :



- Is the proposed flow f feasible? Justify your answer. (0.25 pt + 0.5 pt)
- Is the proposed flow f complete? Justify your answer. (0.25 pt + 0.5 pt)
- Calculate the value of the flow $\varphi^?$ of this iteration. (0.5 pt)
- Is this flow f maximal? Justify your answer. If not, increase it and calculate the maximal flow. (0.25 pt + 0.5 pt + 2 pts)
- calculate a minimum cut. (2.5 pts)

Exercise n°=3 : (4 pts)

Let be the following graph G :



- Determine a minimal weight path from vertex a to each of the other vertices of the graph G , indicating the different steps. (2.5 pts)
- Determine the shortest path μ_{ab} joining vertex a to b , as well as its length $l(\mu_{ab})$. (1 pt + 0.5 pt)

Turn the sheet

comprehension questions (MCQ) : (4.75 pts) Check the correct answer in the following :

1) In the context of directed graphs, what does it mean if a vertex has an in-degree of zero?

It has at least one outgoing edge to another vertex
It has no incoming edges from other vertices
It is part of a directed cycle
It is guaranteed to be connected to all other vertices

2) A subgraph $H = (V_1, E_1)$ of a graph $G = (V, E)$ is called a spanning subgraph if:

$E_1 = \emptyset$
$V_1 = \emptyset$
$V_1 = V$
$E_1 = E$

3) If G is a cycle-free graph with n vertices and k components then G has:

$n + 1$ edges
$n - 1$ edges
$n + k$ edges
$n - k$ edges

4) Consider the graph shown in the figure below :

Which of the following is a valid strongly component ?

$\{A, C, D\}$
$\{A, C, B\}$
$\{A, D, B\}$
$\{B, C, D\}$

5) A complete graph of five vertices is :

Planar graph
Non-planar graph
Null graph
Bipartite graph

6) Minimum number of linearly independent vectors that generates the vectors in a vector space is called :

Basis of vector space
Dimension of vector space
Space
None of these

7) What is the definition of a spanning tree in the context of graph theory?

A subgraph that includes some vertices and is acyclic
A graph that includes all edges of the original graph
A graph that contains at least one cycle
A subgraph that includes all vertices and is acyclic

8) A graph can have more than one Minimum Spanning Tree:

The graph is disconnected
All edge weights are distinct
There are equal-weight edges
The graph is directed

9) In the induction step of proving the number of connected components, what happens when an edge e is removed from the graph ?

The number of components always increases by one
The number of components always decreases by one
The number of components remains unchanged
The number of components may increase or stay the same

10) What characterizes a bipartite graph as described in the text?

It contains cycles of odd length
Every vertex connects to every other vertex
All vertices have the same degree
Edges connect vertices from two distinct sets

11) If G is a tree and an edge is added, what is the result regarding cycles in the graph?

The graph becomes disconnected
Exactly one cycle is created
No cycles are created
Multiple cycles are created

12) How many edges are there in a complete graph K_n ?

n
$n - 1$
$\frac{n(n-1)}{2}$
n^2

13) Which vertex violates flow conservation?

Source only
Sink only
Source and sink
All vertices

14) The value of a flow is equal to:

Flow entering the source
Flow leaving the sink
Flow leaving the source
Maximum edge capacity

15) A cut (S, T) in a flow network is:

A path from source to sink
A partition of vertices with $s \in S, t \in T$
A minimum flow
A cycle

16) The adjacency matrix of a simple undirected graph is always:

Diagonal
Upper triangular
Symmetric
Anti-symmetric

17) Which of the following is TRUE?

Every cocycle is a cocircuit
Every cocircuit is a cocycle
Cocycle and cocircuit are unrelated
Cocircuit contains all edges of the graph

18) What does the cyclomatic number represent?

Number of connected components
Number of independent cycles
Number of vertices in a cycle
Number of edges in a tree

19) A tree with v vertices has:

Cyclomatic number $v - 1$
Cyclomatic number 0 and cocyclomatic number $v - 1$
Cyclomatic number 1 and cocyclomatic number 0
Cyclomatic number v

Graph Theory Exam

Exercise n°=1 : (4 pts)

Planar representation (0.5 pt)

The graph has a triangle, so we apply Euler's property 1. We have :

$$m \leq 3 \times n - 6$$

$$\frac{3 \times 4 + 2 + 4}{2} \leq 3 \times 6 - 6 \Rightarrow 9 \leq 12 \Rightarrow \text{TRUE}$$

so the graph is planar. (1 pt)

Number of faces :

$$f = 2 - n + m \rightarrow f = 2 - 6 + 9 = 5 \text{ faces (0.5 pt)}$$

and the degree of each face, (1 pt)

$$\deg(F1) = \text{length}(a - f - b - d - a) = 4$$

$$\deg(F2) = \text{length}(b - f - c - d - b) = 4$$

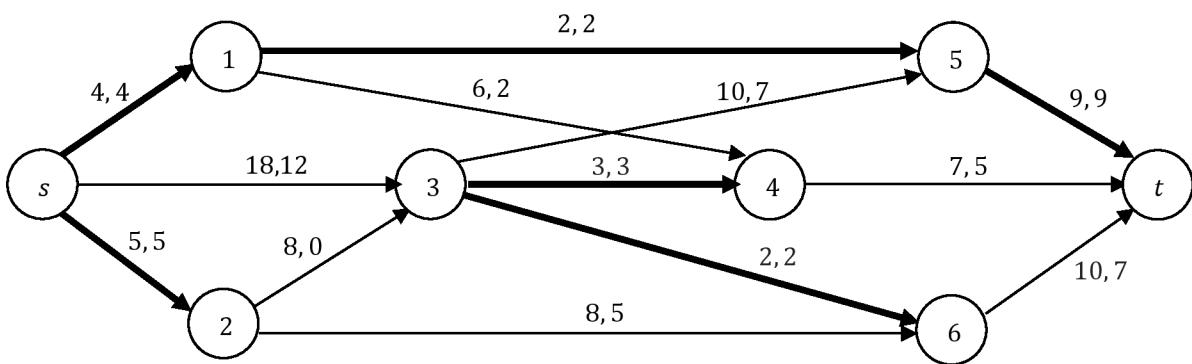
$$\deg(F3) = \text{length}(d - c - e - d) = 3$$

$$\deg(F4) = \text{length}(e - d - a - e) = 3$$

$$\deg(F5) = \text{length}(a - f - c - e - a) = 4$$

Exercise n°=2 : (7.25 pts)

Let f be the following flow :



1. The proposed flow f is feasible (0.25 pt) because the following conditions :

- $\varphi(u_j) \geq 0 \ \forall j \in \{1, \dots, m\} \Leftrightarrow \varphi \geq 0$
- $\varphi(u_j) \leq c(u_j), \forall u_j \in U$
 are verified (0.5 pt)

2. The proposed flow f is complete (0.25 pt) because :

for every path from the source s to the sink t , there is at least one saturated arc (1 pt)

$$\begin{aligned}
 3. \quad \varphi^* &= \sum (\varphi(s, x) / x \in \Gamma_R^+(s)) = \sum (\varphi(x, t) / x \in \Gamma_R^-(t)) \\
 &= \varphi(s, 1) + \varphi(s, 3) + \varphi(s, 2) = \varphi(5, t) + \varphi(4, t) + \varphi(6, t) \\
 &= 4 + 12 + 5 = 9 + 5 + 7 = 21 \text{ (0.5 pt)}
 \end{aligned}$$

4. This flow f is not maximal (0.25 pt) because :

There exists an augmenting chain from s to the sink t : $A = \{s, 3, 5, 1, 4, t\}$ (0.5 pt)

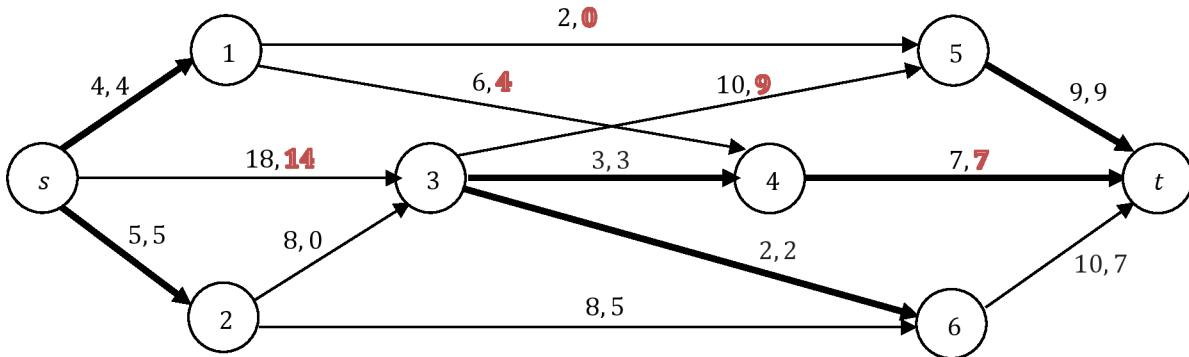
Calculating the maximal flow : (2 pts)

$$A = \{s, 3, 5, 1, 4, t\}$$

t is marked, so the flow is not maximal

$$\varepsilon = \min\{18 - 12, 10 - 7, 2, 6 - 2, 7 - 5\} = \min\{6, 3, 4, 2\} = 2$$

$$\varphi^{new} = \varphi^* + \varepsilon = 21 + 2 = 23$$



$$A = \{s, 3, 5, STOP\}$$

t is not marked, THEN finished, the flow is maximum :

$$\varphi_{max} = \varphi^{new} = 23$$

$$\varphi_{max} = \sum (\varphi(s, x) / x \in \Gamma_G^+(s)) = \varphi^{new}(s, 1) + \varphi^{new}(s, 3) + \varphi^{new}(s, 2) = 4 + 14 + 5 = 23$$

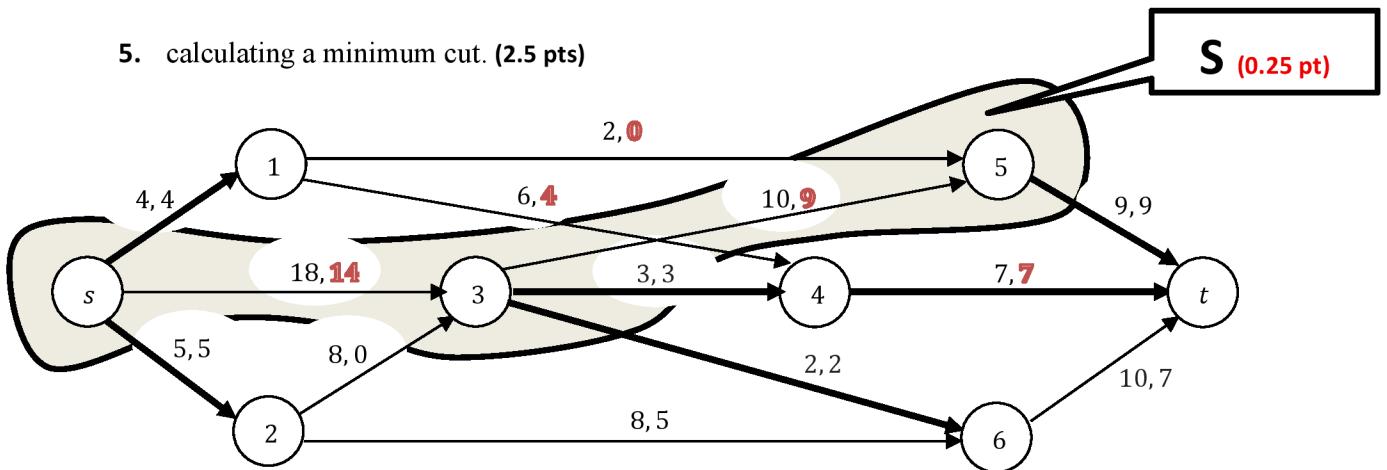
or

$$\varphi_{max} = \sum (\varphi(x, t) / x \in \Gamma_G^-(t)) = \varphi^{new}(5, t) + \varphi^{new}(4, t) + \varphi^{new}(6, t) = 9 + 7 + 7 = 23$$

Then :

$$\boxed{\varphi_{max} = 23}$$

5. calculating a minimum cut. (2.5 pts)



$$a) (s - t) - cut = \{(s, 1), (s, 2), (3, 4), (3, 6), (5, t)\} \text{ (0.25 pt)}$$

$$b) C_p = S \cup P = \{s, 3, 5\} \cup \{2, 4, 6, t\} \text{ (0.25 pt)}$$

c) $C(C_p) = \sum_{\substack{x \in S \\ y \in P}} c(x, y) = c(s, 1) + c(s, 2) + c(3, 4) + c(3, 6) + c(5, t) = 4 + 5 + 3 + 2 + 9 = 23$

(0.5 pt)

d) This cut C_p is *minimal* ($C_{p_{min}}$) because : (0.5 pt)

- The arcs $(s, 1), (s, 2), (3, 4), (3, 6), (5, t)$ outcoming the cut are saturated.
- $(2, 3)$ and $(1, 5)$ are incoming arcs the cut with a flow = 0, so this condition is *explicitly* verified.

e) C_p is *minimal* ($C_{p_{min}}$), so : (0.25 pt)

$$|\varphi_{max}| = |C(C_{p_{min}})|$$

$$23 = 23$$

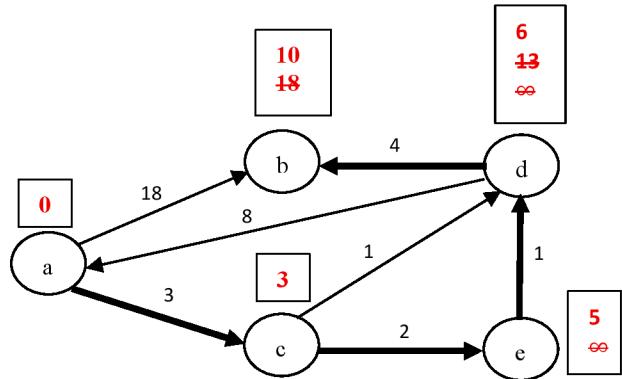
f) $|\varphi_{C_{p_{min}}}| = \sum_{\substack{x \in S \\ y \in P}} \varphi(x, y) - \sum_{\substack{y \in S \\ x \in P}} \varphi(x, y)$ (0.5 pt)

$$|\varphi_{C_{p_{min}}}| = (\varphi(s, 1) + \varphi(s, 2) + \varphi(3, 4) + \varphi(3, 6) + \varphi(5, t)) - (\varphi(2, 3) + \varphi(1, 5))$$

$$|\varphi_{C_{p_{min}}}| = (4 + 5 + 3 + 2 + 9) - 0 = 23 - 0 = 23.$$

Exercise n°=3 : (4 pts)

(2.5 pts)		Verticies				
Steps (k)	D	a	b	c	d	e
1	{a}	0	18	<u>3</u>	$+\infty$	$+\infty$
2	{a, c}	0	18	3	13	<u>5</u>
3	{a, c, e}	0	18	3	<u>6</u>	5
4	{a, c, e, d}	0	<u>10</u>	3	6	5
5	{a, c, e, d, b}	0	10	3	6	5



The shortest path μ_{ab} joining vertex **a** to **b** is given by the sequence of vertices :

$$\mu_{ab} = (a - c - e - d - b) \quad (1 \text{ pt})$$

with a minimum length equal to :

$$l(\mu_{ab}) = 3 + 2 + 1 + 4 = \lambda_b = 10. \quad (0.5 \text{ pt})$$

comprehension questions (MCQ) : (4.75 pts) Check the correct answer in the following :

1) In the context of directed graphs, what does it mean if a vertex has an in-degree of zero?

	It has at least one outgoing edge to another vertex
<input checked="" type="checkbox"/>	It has no incoming edges from other vertices
	It is part of a directed cycle
	It is guaranteed to be connected to all other vertices

2) A subgraph $H = (V_1, E_1)$ of a graph $G = (V, E)$ is called a spanning subgraph if:

	$E_1 = \emptyset$
	$V_1 = \emptyset$
<input checked="" type="checkbox"/>	$V_1 = V$
	$E_1 = E$

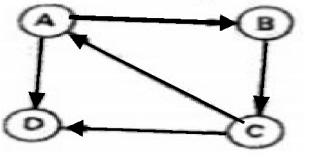
3) If G is a cycle-free graph with n vertices and k components then G has:

	$n + 1$ edges
	$n - 1$ edges
	$n + k$ edges
<input checked="" type="checkbox"/>	$n - k$ edges

4) Consider the graph shown in the figure below :

Which of the following is a valid strongly component ?

	$\{A, C, D\}$
<input checked="" type="checkbox"/>	$\{A, C, B\}$
	$\{A, D, B\}$
	$\{B, C, D\}$



5) A complete graph of five vertices is :

	Planar graph
<input checked="" type="checkbox"/>	Non-planar graph
	Null graph
	Bipartite graph

6) Minimum number of linearly independent vectors that generates the vectors in a vector space is called :

	Basis of vector space
<input checked="" type="checkbox"/>	Dimension of vector space
	Space
	None of these

7) What is the definition of a spanning tree in the context of graph theory?

	A subgraph that includes some vertices and is acyclic
	A graph that includes all edges of the original graph
	A graph that contains at least one cycle
<input checked="" type="checkbox"/>	A subgraph that includes all vertices and is acyclic

8) A graph can have more than one Minimum Spanning Tree:

	The graph is disconnected
	All edge weights are distinct
<input checked="" type="checkbox"/>	There are equal-weight edges
	The graph is directed

9) In the induction step of proving the number of connected components, what happens when an edge e is removed from the graph ?

	The number of components always increases by one
	The number of components always decreases by one
	The number of components remains unchanged

The number of components may increase or stay the same

10) What characterizes a bipartite graph as described in the text?

	It contains cycles of odd length
	Every vertex connects to every other vertex
	All vertices have the same degree
<input checked="" type="checkbox"/>	Edges connect vertices from two distinct sets

11) If G is a tree and an edge is added, what is the result regarding cycles in the graph?

	The graph becomes disconnected
<input checked="" type="checkbox"/>	Exactly one cycle is created
	No cycles are created
	Multiple cycles are created

12) How many edges are there in a complete graph K_n ?

	n
	$n - 1$
<input checked="" type="checkbox"/>	$\frac{n(n-1)}{2}$
	n^2

13) Which vertex violates flow conservation?

	Source only
	Sink only
<input checked="" type="checkbox"/>	Source and sink
	All vertices

14) The value of a flow is equal to:

	Flow entering the source
	Flow leaving the sink
<input checked="" type="checkbox"/>	Flow leaving the source
	Maximum edge capacity

15) A cut (S, T) in a flow network is:

	A path from source to sink
<input checked="" type="checkbox"/>	A partition of vertices with $s \in S, t \in T$
	A minimum flow
	A cycle

16) The adjacency matrix of a simple undirected graph is always:

	Diagonal
	Upper triangular
<input checked="" type="checkbox"/>	Symmetric
	Anti-symmetric

17) Which of the following is TRUE?

	Every cocycle is a cocircuit
<input checked="" type="checkbox"/>	Every cocircuit is a cocycle
	Cocycle and cocircuit are unrelated
	Cocircuit contains all edges of the graph

18) What does the cyclomatic number represent?

	Number of connected components
<input checked="" type="checkbox"/>	Number of independent cycles
	Number of vertices in a cycle
	Number of edges in a tree

19) A tree with v vertices has:

	Cyclomatic number $v - 1$
<input checked="" type="checkbox"/>	Cyclomatic number 0 and cocyclomatic number $v - 1$
	Cyclomatic number 1 and cocyclomatic number 0
	Cyclomatic number v