

Corrigé type examen outils formels. Date : 2026.

Exercice 01 :

Exercice 02 :

\begin{zed}
 voiture==\nat

\end{zed}

\begin{schema}{parking}
 courant: \power voiture\\
 capacite: \nat
\where
#courant\leq capacite

\end{schema}

\begin{schema}{entrer}
\Delta parking \\
 v?: voiture
\where
#courant<capacite \land
v? \notin courant\\
courant'= courant \cup \{v?\}

\end{schema}

\begin{schema}{sortir}
\Delta parking\\
 v?: voiture

University of Larbi Ben Mhidi Oum El Bouaghi
Faculty of Exact Sciences and Life and Natural Sciences
Department of Mathematics and Computer Science

Study stream : Computer Science
Level: 1st Year Master AD
Year: 2025/2026
Duration: 1H:30mn

Arriver_client

Client_en attente

traiter

Client_ servi

Guichet

1 pts

1 pts

0.5 pts

0.5 pts

0.5 pts

0.5 pts

1 pts

1 pts

1 pts

\where

v? \in courant\\
courant'= courant \setminus \{v?\}

\end{schema}

\begin{schema}{est_presente}
\Xi parking \\
 v?: voiture \\
 presente!: \nat

\where

v? \in courant \implies presente!=1 \\
v? \notin courant \implies presente!=0

\end{schema}

\begin{schema}{NB_place}
\Xi parking \\
 NB!: \nat
\where
 NB!= capacite-(#courant)
\end{schema}

Exercice 03 :

chan approcheA = [1] of { bit };
chan approcheB = [1] of { bit };

chan feu_vert_A = [1] of { bit };
chan feu_rouge_A = [1] of { bit };

chan feu_vert_B = [1] of { bit };
chan feu_rouge_B = [1] of { bit };

int nb_vert= 0;

/* ---------------- FEU ROUTE A ---------------- */

proctype FeuRouteA()
{

 do
 :: approcheA ? 1 ->
 feu_vert_A ? 1; /* attente feu vert */
 nb_vert++;

 printf("Voiture passe sur Route A\n");
 assert(nb_vert== 1);

1 pts

1 pts

1 pts

0.25 pts

0.25 pts

0.25 pts
0.25 pts

0.25 pts

0.25 pts

0.25 pts

 feu_rouge_A ! 1; /* retour au rouge */
 nb_vert--;
 od
}

/* ---------------- FEU ROUTE B ---------------- */

proctype FeuRouteB()
{

 do
 :: approcheB ? 1 ->
 feu_vert_B ? 1;

 nb_vert++;

 printf("Voiture passe sur Route B\n");

 assert(nb_vert== 1);

 feu_rouge_B ! 1;
 nb_vert--;
 od
}

/* ------------- CONTROLEUR DES FEUX ------------- */

proctype Controleur()
{
 do
 :: atomic {
 /* Autoriser Route A */
 feu_vert_A ! 1;
 feu_rouge_B ? 1; /* Route B attend rouge */
 }

 :: atomic {
 /* Autoriser Route B */
 feu_vert_B ! 1;
 feu_rouge_A ? 1;
 }
 od
}

/* -------------------- INIT -------------------- */

init
{
 run Controleur();
 run FeuRouteA();
 run FeuRouteB();

 /* génération de voitures */
 do
 :: approcheA ! 1

1 pts

1 pts

1 pts

0.25 pts

 :: approcheB ! 1
 od
}
Question 02 :

Exercice 04 :

Theorem plus_com : forall a b : nat, a + b = b + a.

Proof.

 induction a as [| a' IH].

 - (* Cas a = 0 *)

 intros b. simpl.

 (* on doit montrer : b = b + 0 *)

 induction b as [| b' IHb].

 + simpl. reflexivity.

 + simpl. rewrite <- IHb. reflexivity.

 - (* Cas a = S a' *)

 intros b. simpl.

 (* On veut : S (a' + b) = b + S a' *)

 rewrite IH.

 (* Reste à montrer : b + S a' = S (b + a') *)

 induction b as [| b' IHb].

 + simpl. reflexivity.

 + simpl. rewrite IHb. reflexivity.

Qed.

1 pts

0.5 pts

0.25 pts

0.5 pts

0.25 pts

0.5 pts

0.25 pts

0.5 pts

0.5 pts

0.25 pts

0.5 pts

