
People's Democratic Republic of Algeria
Ministry of higher education and scientific research
Larbi Ben M'hidi-Oum El Bouaghi University

Faculty of Exact Sciences and Natural and Life Sciences
Mathematics and Computer Science Department

Educational Handout of Tutorials and Practical

Work in Algorithms and Data Structures 2 (ADS2)

Level: 1st year “Computer science”

Proposed by:

Dr. Dehimi Nour El Houda

Academic year : 2024-2025

1 | P a g e

Table of Contents
Preamble ...4
Section 1: Tutorials -Exercises- ..2
Part 1 : Records ... 2
Pedagogical objectives .. 2
Exercise n°1 ...2
Exercise n°2 ...2
Exercise n°3 ...2
Exercise n°4 ...3
Exercice n°5 .. 3

Part 2: Sub-algorithms ..4
Pedagogical objectives .. 4
Exercise n°1 ...4
Exercise n° 2..4
Exercise n°3...5
Exercise n°4...5
Exercise n°5...5
Exercise n°6 ...6
Exercise n°7 ...6
Exercice n°8 .. 7

Part 3: Recursive sub-algorithms .. 8
Pedagogical objectives .. 8
Exercise n°1... 8
Exercise n°2...8
Exercise n°3...9
Exercise n°4...9
Exercise n°5 ...9

Part 4: Pointers and linked lists ...10
Pedagogical objective .. 10
Exercise n°1 ...10
Exercise n°2...11
Exercise n°3...11
Exercise n°4...11
Exercise n°5...11
Exercise n°6 .. 11
Exercice n°7 .. 12
Exercice n°8 .. 12

Section 1: Tutorials -Solutions- ..13
Part 1: Records - Solutions- ..13
Pedagogical objectives ..13

2 | P a g e

Solution of the exercise n°1 .. 13
Solution of the exercise n°2 .. 14
Solution to the exercise n°3 .. 15
Solution of the exercise n°4 .. 16
Solution of the exercise n°4 .. 17

Part 2: Sub-algorithms – Solutions- .. 18
Pedagogical objectives ..18
Solution of the exercise n°1 .. 18
Solution of the exercise n°2 .. 19
Solution of the exercise n° 3... 20
Solution of the exercise n°4 .. 22
Solution of the exercise n° 5 ... 23
Solution of the exercise n°6 .. 25
Solution of the exercise n°7 .. 25

Part 3: Recursive sub-algorithms – Solutions- ...28
Pedagogical objectives ..28
Solution of the exercise n°1 ...28
Solution of the exercise n°2 .. 28
Solution of the exercise n°3 ...29
Solution of the exercise n°4 ...30

Part 4: Pointers and linked lists – Solutions- ..31
Pedagogical objective .. 31
Solution of the exercise n°1 .. 31
Solution of the exercise n°2 ...32
Solution of the exercise n°3 ...32
Solution of the exercise n°4 ...33
Solution of the exercise n°5 .. 34
Solution of the exercise n°6 .. 37
Solution of the exercise n°7 .. 38
Solution of the exercise n°8 .. 38

Section 2: Practical work -Exercises- .. 42
Part 1 : Records ... 42
Pedagogical objectives ..42
Exercise n°1 .. 42
Exercise n°2 .. 42
Exercise n° 3..43

Part 2: Sub-algorithms ..44
Pedagogical objectives ..44
Exercise n°1...44
Exercise n°2...44
Exercise n°3...45

3 | P a g e

Part 3 : Recursive sub-algorithms ... 46
Pedagogical objectives ..46
Exercise n°1...46
Exercise n°2...46
Exercise n°3...46

Part 4: Pointers and linked lists ...47
Pedagogical objective .. 47
Exercise n°1...47
Exercise n°2...47
Exercise n°3...47
Exercise n°4...49
Exercise n°5...49
Exercise n° 6..49

Section 2: Practical work -Solutions- .. 49
Part 1 : Records – Solutions- ..49
Pedagogical objectives ...49
Solution of the exercise n°1 .. 49
Solution of the exercise n°2 ... 50
Solution of the exercise n°3 ... 52

Part 2: Sub-algorithms – Solutions- .. 53
Pedagogical objectives ..53
Solution of the exercise n°1 .. 53
Solution of the exercise n°2 .. 54
Solution of the exercise n°3... 57

Part 3 : Recursive sub-algorithms -Solutions- ..60
Pedagogical objectives ..60
Solution of the exercise n°1 .. 60
Solution of the exercise n°2 ... 61
Solution of the exercise n°3 ...61

Part 4: Pointers and linked lists-Solutions- ... 63
Pedagogical objective .. 63
Solution of the exercise n°1 .. 63
Solution of the exercise n°2 .. 64
Solution of the exercise n°3 .. 64
Solution of the exercise n°4 .. 67
Solution of the exercise n°5 .. 67
Solution of the exercise n°6 .. 69

Bibliography ... 72

4 | P a g e

Preamble

This document presents tutorials and practical exercises, designed to teach the subject

"Algorithms and Data Structure 2," introduced in the second semester in the Department of

Mathematics and Computer Science at Oum El Bouaghi University, and intended for first-year

computer science students.

First, the pedagogical objectives of this document are:

 Manipulate sub-algorithms (subroutines): procedures & functions;

 Understand recursive sub-algorithms;

 Understand the declaration, syntax and semantics of pointers and linked lists;

 Allow the student to acquire the fundamentals of programming.

Indeed, and in order to achieve the aforementioned objectives, we have made tremendous

efforts to approach this work in several aspects; where we have synthesized the most important

and relevant information based on different documentary sources (books, articles, courses,

websites, etc.). While respecting the official canevas determined by the Ministry of Higher

Education and Scientific Research.

Furthermore, this document is divided into two sections: the first presents tutorials and a set

of exercises with their solutions, divided into parts, while the second section provides a set of

practical exercises that enable students to acquire the basics of C programming.

However, the document in question will remain partial and not exhaustive. This is why we

will constantly update it to enrich its content. However, we would be grateful if readers could

notify us of any errors, observations, etc., and also offer us opinions in this regard.

2 | P a g e

Section 1: Tutorials -Exercises-

Part 1 : Records

Pedagogical objectives

- Understand the usefulness of records and manipulate them to solve different problems.

--

Exercise n°1

Define a TIME type (record) which contains the fields: hour, minute, second.

1. Write an algorithm which allows you to perform the sum T of two durations T1 and T2 of

type TIME.

2. Write an algorithm which allows you to transform a time T of type TIME into an integer S

which expresses this time in seconds. Example: for T = 2 hours 10 minutes 37 seconds,

S = 7837 seconds.

Exercise n°2

A complex number C is defined by its real “a” and imaginary “b” parts (C = a + bi) .

Write an algorithm that reads two complex numbers C1 and C2 and then displays their sum and

product.

Exercise n°3

“Ens” is a record defined by two pieces of information (fields):

- T_Pos an array of integers that can contain a maximum of 50 elements;

- N the number of elements of the array T_Pos. Given a string Ch, write an algorithm which

allows you to search for the string "ab" and put in a record of type Ens (in the table T_Pos) all

the positions of the string “ab” in Ch.

Example: Ch = ' faabaababbaabrs '.

Positions: 3, 6, 8, 12 => T_Pos [1]=3, T_Pos [2]=6, T_Pos [3]=8, T_Pos [4]=12.

Number of elements: 4 = > N=4.

3 | P a g e

Exercise n°4

A computer is characterized by its serial number, brand, model, and price.

1. Define the structured type Computer.

2. Write an algorithm that stores the information of 20 computers, then displays the

computers whose price is greater than 50.000 DA.

Exercice n°5

A car is characterized by its registration_number, brand, model and price.

1- Define the structured type Car.

2- Write an algorithm allowing you to record information about 20 cars and display the most

expensive one.

4 | P a g e

Procedure P_Test (A, B, C: integer);
Variable S: integer;
Begin
S A+B+C;
Write (S);
End;

Part 2: Sub-algorithms

Pedagogical objectives

 Manipulate sub-algorithms (subroutines): procedures & functions;

 Understand the difference between them;

 Understand the concepts: local variable, global variable, formal parameter, effective

parameter, passing parameters by value and by address.

Exercise n°1

A procedure is declared as follows:

1. Write a main algorithm that calls this procedure.

2. Specify local and global variables, formal and effective parameters.

3. Replace the procedure P_Test with a function F_Test.

4. Call this function in the main algorithm.

Exercise n° 2

Consider the following algorithm:

5 | P a g e

Algorithm exo3;
Variables T: array [1…100] integer;

i,N :integer ;

Procedure P1 (T: array [1.. N] integer);
Variables i, a: integer;
Begin
a ←0 ;
For i← 1 to N do

a←a+ T [i] ;
Endfor
Write (a);

End;

Procedure P2 (T: array [1.. N] integer);
Variables i , b: integer;
Begin
b← 1 ;
For i← 1 to N do

b←b *T[i] ;
Endfor
Write (b);
End;
Begin
Repeat

Algorithm exo2;
Variables x, y, z, t: integer;
Proceduremy_procedure (a, b, var c, d: integer)
Begin

c ← a + b ;
d ← a * b;

End;
Begin

read (x);
read (y);
my_procedure (x, y, z, t);
write (z);
write (t);

END

1. Identify the real (effective) parameters and the formal parameters .

2. What does this program display assuming the user enters 2 in x and 3 in y ? Modify the

algorithm to obtain a more logical result .

Exercise n°3

Consider the following algorithm:

5 | P a g e

Read(N);
Until (N>=1 and N<100)
For i ← 1 to N do
Read (T[i]);

Endfor
P1(T);
P2(T);
END

1. Run the algorithm with the following array:

1 0 2 4 3 1 2 1 2 3

2. What is the role of the procedure P1?

3. What is the role of the procedure P2?

4. In the main algorithm, is it possible to do the following calculation:

C1 = a/2 and C2 = b/2? Justify your answer.

5. Replace both procedures with functions. In this case is it possible to calculate C1and C2

in the main algorithm? Justify your answer.

Exercise n°4

1. Write a FindVal sub-algorithm that indicates whether a value is contained in a one-

dimensional array (with the size N). If so, the sub-algorithm must indicate in which cell the

value was found.

2. Write a sub-algorithm which takes as parameters two arrays of real numbers and which

returns the value true if they are identical, false otherwise.

3. Design local and global variables, formal and effective parameters.

Exercise n°5

A positive integer is perfect if it is equal to the sum of its divisors (except itself). For example

6 is perfect, because 6 = 1+2+3; similarly 28 is perfect, because 28 = 1 + 2 + 4 + 7 + 14.

1. Write a function Som_Div which calculates the sum of the divisors of n .

2. Write a P_perfect_procedure which uses the Som_Div function and indicates whether n

is perfect or not.

3. Transform this procedure into a Boolean function F_ perfect.

4. Use the previous three sub-algorithms in an algorithm.

5. Design local and global variables, formal and effective parameters as well as sub-algorithms

calls.

6 | P a g e

Exercise n°6

Consider an array T containing the marks of N students (N ≤ 100) in a given module. We

aim to statistically analyze these results using several procedures:

1. Write a procedure Admitted_Students (T, N) that displays all marks greater than or equal

to 10 (admitted students).

2. Write a procedure Non_Admitted_Students (T, N) that displays all marks strictly less than

10 (non-admitted students).

3. Write a procedure Class_Average (T, N) that calculates and displays the overall class

average.

This procedure calls a recursive function named Sum_Grades (T, N) that calculates the sum

of the marks.

4. Write a procedure Highest_Mark (T, N) that identifies and displays the highest mark in the

array.

5. Write a procedure Lowest_Mark (T, N) that identifies and displays the lowest mark in the

array.

6. Write the main algorithm that:

 Fills the Marks array with input or generated values,

 Calls the above procedures in sequence.

7.Is it possible to calculate the difference between the highest and lowest grade in the main

algorithm? Clearly justify your answer. If your answer is no, make the necessary changes to

ensure this difference can be calculated in the main algorithm.

8. After the initial input of marks for 100 students, some new students enrolled late. This

situation highlights the limitation of using an array structure with a fixed size. What

solution would you propose to allow the dynamic addition of new marks?

Exercise n°7

Consider two vectors V1 and V2 of 20 integers:

1. Write a function “Product (V1, V2: [1..20] array of integer): integer” that allows you to

calculate P: the scalar product of two vectors.

2. Write a procedure “Sum (V1, V2: [1..20] array of integer)” that allows you to calculate S1:

the sum of the elements of the first vector V1 and S2: the sum of the elements of the second

vector V2.

3. Write the main algorithm in which we call the previous sub-algorithms (Product and Sum).

4. In the main algorithm, is it possible to compare between S1 and S2? If your answer is no

give the appropriate solution.

7 | P a g e

NB: The scalar product of two vectors V1 and V2 of dimension n and coordinates such that:

�1(�1, �2, …, ��) et �2(�1, �2, …, ��)

� = �1. �2 =
�=1

�

��� . �� = �1�1 + �2�2 + … + ����

Exercice n°8

Given an array T(N) of integers:

1. Write a procedure Nbr_Positives(T) to:

 Find and display all positive numbers in array T,

 Calculate and display the sum of these numbers.

2. Write a procedure Nbr_Negatives(T) to:

 Find and display all negative numbers in array T,

 Calculate and display the sum of these numbers.

3. Write the main algorithm

4. In the main algorithm, is it possible to calculate the total sum of the numbers (positive and

negative) in the array? Justify your answer.

5. If your answer is No, make the necessary modifications to ensure that the total sum can be

calculated in the main algorithm.

8 | P a g e

Function Product (n: integer, x: integer): integer;
Begin
If (n > 0) then
Write ("before call n=", n, ", x=", x);
Product <- Product (n-1, x) + x;
Write (" after call n=", n, "x= ", x);

Else
Product <- 0

Endif
End;

Begin /* main algorithm*/
n = 8, x = 5;
Write (n, '*', x, '=' ,Product (n, x));
END

Part 3: Recursive sub-algorithms

Pedagogical objectives

Manipulate recursive sub-algorithms.

--

Exercise n°1

Run the following recursive function (for n = 8, x = 5) and deduce what it is doing.

Exercise n°2

a. Write an iterative function that returns the quotient of the Euclidean division of an integer

a by an integer b using successive subtraction.

b. Give the corresponding recursive function.

9 | P a g e

Exercise n°3

Write an algorithm that uses a recursive sub-algorithm to calculate the greatest common divisor

(GCD) of two strictly positive integer values using the Euclid method.

Exercise n°4

1. Write a recursive function Sum_Tab, allowing you to calculate the sum of the elements of

an array of integers.

2. Write a recursive procedure Inverse_Tab , allowing you to reverse the elements of an

array of integers.

3. Write an algorithm that uses the Sum-Tab and Inverse_Tab sub-algorithms.

Exercise n°5

Write a recursive function to calculate Xn. (X integer).

2. Write a recursive function to calculate X !. (X integer).

3. Use these two functions in the main algorithm to calculate the following sum:

S = (Xn+1 – (1) !) + (Xn+2 – (2) !) + (Xn+3– (3) !) + …………. + (Xn+m – (m) !)

10 | P a g e

Part 4: Pointers and linked lists

Pedagogical objective

 Understand the declaration, syntax and semantics of pointers, among others: indirect

addressing, the content of a dynamic variable as well as arrays using pointers;

 Understand dynamic memory allocation and freeing.
 Manipulate linked lists using different operations.

--

Exercise n°1

Let three integers A, B, C and two pointers of integer type P1 and P2.

A B C P1 P2

@:
0xf0

@:
0xf4

@:
0xf8

@:
0xfA

@:
0xfC

Determine the values of the different elements given in the table for each operation.

A B C &A &B &C P1 P2 *P1 *P2
A←1, B←2, C←3
P1←&A, P2←&B
P2= &C
*P1 = *P2
(*P2)++
P1= P2
P2= &B
*P2 = *P1 - 2* *P2
(*P2)--
C = (P2 == &C)
*P2= *P1 + A

11 | P a g e

Exercise n°2

Let a pointer P, which points to an array A:

int A[]= {12, 23, 34, 45, 56, 67, 78, 89, 90}; int *P; P = A;

What values or addresses do the following expressions provide?

a) *P+2

b) *(P+2)

c) &P+1

d) &A[4]-3

e) A+3

f) &A[7]-P

g) P+(*P-10)

h) *(P+*(P+8)-A[7])

Exercise n°3

Write an algorithm that allows you to:

- Declare pointers to: an integer, a real number, a character, a “Student” record

composed of the following fields: Registration number, Last name, First

name and Result ;

- Then Read() data that corresponds to the variables pointed to by these pointers.

Exercise n°4

Write an algorithm that arranges the elements of an array of N integers in reverse

order. Using two pointers P1 and P2 and a numeric variable HELP (intermediate

variable) to swap the array elements.

Exercise n°5

An employer is defined by the following information: last name, first name, date

of birth, number of children and qualification. We want to establish a list of all

employers, knowing that we do not know their number beforehand, however, they

will not exceed 300 (<=300).

1. Propose a data structure (records) to be used to manage employers.

2. Write an algorithm to enter all the information.

3. Write an algorithm to sort employers according to increasing order of their

ages and only keep in memory 10% of the youngest employers.

Exercise n°6

Consider an array T of integers with a maximum size of 100.

12 | P a g e

Using only pointers (without any variable of integer type), write an algorithm that:

1. Reads the elements of the array.

2. Displays the indices of the elements that are multiples of 3 (divisible by 3).

3. Calculates and displays the product of these elements.

Exercice n°7

We have T an array of integers with a maximum size of 100. Using the pointers, write an

algorithm, which allows you to:

1. Read the array;

2. Print the indexes of the odd elements and calculate their sum.

NB. Without using any integer variables just the pointers.

Exercice n°8

We want to build a list of elements defined by real-type data, without knowing their number in

advance.

Using the singly linked list data structure, write an algorithm that allows:

a) Creating the list of elements.

b) Displaying the list of elements.

c) Inserting an element at the K-th position in the list.

d) Deleting a given element from the list.

13 | P a g e

Algorithm Sum_Time ;

Variables X: integer;

T, T1, T2: TIME;

Begin

Write (“ Enter the T1 and T2 durations in hours, minutes and seconds ”)

Read (T1.Hour);

Read (T1.Minute);

Read (T1.Sec);

Read (T2.Hour);

Read (T2.Minute);

Read (T2.Sec);

Type TIME= Record

Hour, Minute, Sec: integer;

EndRecord

Section 1: Tutorials -Solutions-

Part 1: Records - Solutions-

Pedagogical objectives

- Understand the usefulness of custom types and manipulate them to solve different problems.

--

Solution of the exercise n°1

14 | P a g e

Algorithm Complex_Calculation ;

Variables S, P, C1, C2: Complex;

Begin

Write ("Give the real part of the 1st complex number C1: ");

Read (C1.Preel);

Write ("Give the imaginary part of the 1st complex number C1: ");

Read (C1.Pimag);

TypeComplex =Record

Preel : real;

Pimag : real;

EndRecord

Algorithm Transformation;

Variables T: TIME;

R: integer;

Begin

Write (“ Enter the duration T in hours, minutes and seconds ”)

Read (T.Hour);

Read (T.Minute);

Read (T.Sec);

R←T.Sec +(60* T.Minute)+(3600* T.Hour);

Write (“ The duration in seconds is ”, R);

END

X←T1.Sec+ T2.Sec;

T.Sec←X mod 60;

T.Minute←X div 60;

X←T.Minute+T1.Minute+ T2.Minute;

T.Minute ← X mod 60;

T.Hour ← X div 60+ T1.Hour+ T2.Hour;

Write (" The result of the sum of two durations T1 and T2 is ", T.Hour , " Hour ", T.Minute , "

Minute ", T.Sec , “ Second ”);

END

Solution of the exercise n°2

15 | P a g e

Algorithm Pos_ab ;

Variables i, j, k, T :integer ;

Ch: string;

Pos: Ens;

Begin

Write ("Enter a string");

Read (Ch);

T← Length (Ch);

i← 1 ;

j←1 ;

Pos.N←0 ;

While (i<T) do

If (Ch [i]='a' and Ch [i+1]='b') then

Pos. T_Pos [j] ←i ;

Pos.N←Pos.N+1 ;

Type Ens = Record

T_Pos :array [1..50] integer;

N: integer;

EndRecord

Solution to the exercise n°3

Write ("Give the real part of the 2nd complex number C2: ") ;

Read (C2.Preel);

Write ("Give the imaginary part of the 2nd complex number C2: ") ;

Read (C2.Pimag);

S.Preel ← C1.Preel + C2.Preel;

S.Pimag←C1.Pimag + C2.Pimag;

Write ("Sum = ", S.Preel , "+ ", S.Pimag , " i ");

P.Preel ← (C1.Preel * C2.Preel)- (C1.Pimag * C2.Pimag);

P.Pimag← (C1.Preel * C2.Pimag)+ (C1.Pimag * C2.Preel);

Write ("Product = ", P.Preel , "+", P.Pimag , "i");

END

16 | P a g e

Solution of the exercise n°4

Algorithm Exercise_4 ;

Type Computer=Record
serial_number: integer;

brand: string(20); model:

string(20); price: real;
EndRecord

Var:

C : array [1..20] of Computer; i :

integer;

Begin

Write (“Enter the information about the Computers”);

For 1←i to 20 do

Read (C[i]. serial_number); Read

(C[i]. brand);
Read (C[i]. model);

Read (C[i]. price);

Endfor

j←j+1 ;

i←i+2 ;

Else

i←i+1

End if

Endwhile

Write ("The positions of the string 'ab' in ", Ch , "are");

For k← 1 to j do

Write (Pos. T_Pos [k]);

Endfor

Write (“The number of elements is”, Pos.N);

END

17 | P a g e

For i←1 to 20 do
If (C[i].price > 50000) then
Write (C[i].serial_number, C[i].brand, C[i].model, C[i].price);

endif
Endfor

END

Solution of the exercise n°4

Algorithm car ;

Type Car=Record

registration_number: integer;

brand: string(20);

model: string(20);

price: real;

EndRecord

Variables

C : array [1..20] of Car;

i, pr, ind: integer;

Begin

Write (“Enter the information about the cars”);

For 1←i to 20 do

Read (C[i]. registration_number);

Read (C[i]. brand);

Read (C[i]. model);

Read (C[i]. price);

Endfor

pr← C[1].price ; ind← 1 ;

For 2←i to 20 do
If (C[i].price>pr) then

pr ← C[i].price ;
ind← i;

endif
Endfor
Write (“The most expensive car is the”, ind, “car”);
END

18 | P a g e

Algorithm exo1;
Variables X ,Y,Z : integer;

Global variables

P_Test Procedure (A, B, C: integer);
Variable S: integer;
Begin
SA+B+C
Write (S);
End;
Begin
Read (X,Y,Z);
P_Test (X, Y, Z);
END.

Formal parameters

Local variable

Effective parameters

Part 2: Sub-algorithms – Solutions-

Pedagogical objectives

 Manipulate sub-algorithms (subroutines): procedures & functions;

 Understand the difference between them;

 Understand the concepts: local variable, global variable, formal parameter, effective parameter,

passing parameters by value and by address.

Solution of the exercise n°1

 Questions 1 and 2

19 | P a g e

Algorithm exo2;
Procedurema_ procedure (a, b, var c, d: integer)
Begin

c ← a + b ;
d ← a × b;

End;

Variables x , y, z, t: integer ;
Begin

read (x);
read (y);
my_procedure (x, y, z, t);

write (z);
write (t);

END

Algorithm exo1;
Variables X ,Y,Z, R : integer;
Function F_Test (A, B, C: integer): integer;
Var S: integer;
Begin
S A+B+C.
F_TestS;End;
Begin
Read (X,Y,Z);
R F_Test (X, Y, Z);Write
(R);
END.

a b c d
2 3 a × b = 2×3 = 6

5
tz

 Questions 3 and 4

Solution of the exercise n°2

 The effective parameters are those of the calling program (of the main algorithm): x, y, z, t.

 The formal parameters are those of the sub-algorithm (the procedure) and make it possible
to recover the value of the real parameters: a, b, c, d

 What does this program display assuming the user enters 2 in x and 3 in y ?

x y z t
2 3 a + b = 2+3= 5

After the call to my_procedure , z = 5 and t is worth nothing specific. Indeed, c is a parameter

passed by variable, so the modifications made to c in the sub-algorithm are reflected in the

corresponding effective parameter z. On the other hand, d being a parameter passed by value,

20 | P a g e

Algorithm exo2;

Proceduremy_ procedure (a, b, var c, var d: integer)
Begin

c ← a + b ;
d ← a × b;

End;
Variables x , y, z, t: integer ;
Begin

read (x);
read (y);
my_procedure (x, y, z, t);
write (z);
write (t);

END 65
tz

a
2

b
3

c d

the corresponding effective parameter t is not affected by the changes. t therefore retains its

value before the call to the sub-algorithm.

 Modify the code to obtain a more logical result.

By “transforming” d into a parameter by variable (address), in this case my_procedure takes

two integers as input and returns via c the sum of these two integers and via d their product.

x y z t
2 3 a + b = 2+3= 5 a × b = 2×3 = 6

Solution of the exercise n° 3

1. Run the algorithm with the following array:

1 0 2 4 3 1 2 1 2 3

The algorithm displays:

19
0

2. What is the role of the procedure P1?

It calculates the sum of the elements of an array.

3. What is the role of the procedure P2?

It calculates the product of the elements of an array.

4. In the main algorithm, is it possible to calculate C1= a/2 and C2 = b/2?

No, we cannot.

Justify your answer

The variables “a”, declared to calculate the sum, and “ b”, declared to calculate the product,

are local variables. In fact, they cannot be used in the main algorithm because the space of

these local variables is freed at the end of the execution of the procedures.

21 | P a g e

Algorithm exo3;
Variables T : array [1..100] integer;

N,S,P, i:integer;
Function F1 (T: array [1.. N] integer): integer ;
Variables i , a: integer;
Begin
a ←0 ;

For i← 1 to N do
a←a+ T [i] ;

End for
F1←a ;

End;
Function F2 (T: array [1.. N] integer): integer ;
Variables i , b: integer;
Begin
b←1;
For i← 1to N do

b←b *T[i];
Endfor

F2←b ;
End;
Begin
Repeat
Read(N);

Until (N>=1 and N<100)
For i ← 1 to N do

Read (T[i]);
Endfor
S F1(T); Write (S);
PF2(T); Write (P);

END

5. Replace both procedures with functions.

In this case, is it possible to calculate C1and C2 in the main algorithm?

Yes. The use of functions makes it possible to recover the result of the sum “a” in the global

variable S and the result of the product “b” in the global variable P ;

22 | P a g e

Algorithm exo4;
Variables T: array [1..20] real;

val: real;
case: integer;
b: boolean;

Procedure FindVal (N: Integer,T: array[1.. N] real,val: real;Var rg : integer, found: boolean);
Variables i: integer;
Begin
found← false;
rg ← 0 ;
i← 1 ;
Repeat
If (T[i] = val) then
found ← true;
rg ← i;

else
│ i ← i + 1 ;
endif
Until (found = true OR i > N)
End;
Begin
// We assume that T is already filled
Read (val);
FindVal (20, T, val, case, b);
If (b = true) then
Write (“The value”, val, “was detected at the position”, case);

Else
Write (“Value not found”);

Endif
END

Algorithm exo4;
VariablesA1, A2: array [1.. 20] real;

M1, M2: integer;
b: boolean;

Function Compare (N1, N2: integer, T1: array [1..N1] real, T2: array [1..N2] real): boolean;
Variables i: integer;

identical: boolean;
Begin

Solution of the exercise n°4

1.

2.

23 | P a g e

Function Som_Div (n: integer): integer;
Variable i, sum: integer;

Begin
sum0 ;
For i1 to (n div 2) do

If (n mod i = 0) then
sum sum+i ;

Endif
EndFor
Som_Div sum;

End;

Solution of the exercise n° 5
1. ​

2. ​
Procedure P_Perfect (n: integer);
Variable S: integer;

Begin
S Som_Div (n);

If (N1 ≠ N2) then
identical = false; // if the arrays are different sizes, they are not identical.

else
i←1;
identical ← true;
Repeat
If (T1[i] ≠ T2[i])Then
identical ← false;

else
i← i+1 ;

Endif
Until (identical = false OR i > N1)
Compare ← identical;
End if
END
Begin
Read (M1 , M2); // M1 and M2 <= 20We assume that A1 and A2 are already filled

b= Compare (M1, M2, A1, A2);
If (b = true) then
Write (“the two tables are identical”);

else
Write (“the two tables are not identical”) ;

Endif
END

24 | P a g e

Function F_Perfect (n: integer): boolean;
Variable S: integer;
Begin

S= Som_Div (n);
If (S = n) then

F_Perfecttrue;
Else

F_Perfectfalse;
Endif

End;

Algorithm Perfect;
Variables Bool : boolean, n: integer;
//Declaration and definition of subroutines 1, 2, 3.
Function Som_Div (n: integer): integer;

Variable i, sum: integer;
Begin
sum0 ;
For i1 to (n div 2) do

If (n mod i = 0) then
sum sum+i ;

Endif
EndFor
Som_Div sum;

End;
Procedure P_Perfect (n: integer);
Variable S: integer;

Begin
S Som_Div (n);
If (S = n) then

Write (“the number”, n, “ is perfect”);
Else

Write (“the number”, n, “is not perfect”);
Endif

End;
Function F_Perfect (n: integer): boolean;

3. ​

4. Main algorithm:

If (S = n) then
Write (“the number”, n, “ is perfect”);

Else
Write (“the number”, n, “is not perfect”);

Endif
End;

25 | P a g e

Begin
Write ("Enter a number"); Read (n);
// Procedure call
P_Perfect (n); // here, “n” is an effective parameter.
// Function call
Bool F_Perfect (n); // here, “n” is an effective
parameter. If (Bool = true) then
Write (“the number”, n, “ is perfect”);

Else
Write (“the number”, n, “is not perfect”);

End if
END

Variable S: integer;
Begin

S= Som_Div (n); If
(S = n) then

F_Perfecttrue;
Else

F_Perfectfalse;
Endif

End;

Solution of the exercise n°6

1. Procedure Admitted_Students (T: [1..100] array of integer, N: integer)

Variables i: integer;
Begin

For i←1 to N do

If T[i] >= 10 then

Write (“Student”, i, “ is admitted”);

End If

End for

End;

2. Procedure Non_Admitted_Students (T: [1..100] array of integer, N: integer)

Var i: integer;
Begin

For i←1 to N do

If T[i] <10 then

Write (“Student”, i, “ is not admitted”); End If End for

End ;

26 | P a g e

3. Function Sum_Grades (T: [1..100] array of integer, N: integer): integer

Begin
If N = 0 then Sum_Grades ← 0;

Else Sum_Grades ← T[N] + Sum_Grades (T, N-1); End if;
End;

Procedure Class_Average (T: [1..100] array of integer, N: integer)

Variables S, M: integer;

Begin

S ← Sum_Grades (T, N);

M ← S/N;

Write (“ Class_Average is: ”, M);

End;

4. Procedure Highest_Grade (T: [1..100] array of integer, N: integer)

Var: i, max: integer;
Begin

max← T[1];

For i←2 to N do

If T[i] >= max then Max ← T[i];

Endif Endfor

Write (“The Highest Grade is: ”, max); End;

5. Procedure Lowest_Grade (T: [1..100] array of integer, N: integer)

Var: i, min: integer;
Begin

min← T[1];

For i←2 to N do

If T[i] <= min then

min ← T[i];

Endif Endfor

Write (“The Lowest Grade is: ”, max);
End;

27 | P a g e

6. Algorithm Exercise_6;

Var: T: array [1..100] of integer; N, i integer;

Copy the previous procedures into this section

Begin

Repeat

Write (“Enter the real dimension of the vectors”); Read(N);

Until (N>=1 and N<=100)

Write (“Enter the elements of the vector T”);

For 1←i to N do

Read (T[i]);

Endfor;

Admitted_Students(T, N);

Non_Admitted_Students(T, N);

Class_Average(T, N);

Highest_Grade(T, N);

Lowest_Grade(T, N);

END.

7. No, we can’t;

Justification: The variables “max and min”, declared to identify the Highest Grade and the Lowest

Grade, are local variables . Indeed, they cannot be used in the main algorithm to compare between

max and min because the space of these local variables is freed when the execution of the procedure

is finished.

Solution: there are three possible solutions

a. Usemax andmin as parameters and pass them by variable (var max, min).

b. Declaremax andmin as global variables.

c. Convert the two procedures: Highest_Grade and the Lowest_Grade into functions

8. This case requires the use of linked lists

25 | P a g e

Solution of the exercise n°7

1.

Function Product (V1, V2: [1..20] array of integer): integer

Variable P : integer ;

Begin

P ← 0 ;

For i←1 to N do

P ← P +(V1[i] * V2[i]);

Endfor

Product← P ;

End ;

2.

Procedure Sum (V1, V2: [1..20] array of integer)

Variables S1, S2: integer;

Begin

S1=0; S2=0;

For i←1 to N do

S1 ← S1 +V1 [i];

S2 ← S2 +V2 [i];

Endfor

Write (“the sum of the elements of the vector V1 is”,S1);

Write (“the sum of the elements of the vector V2 is”,S2);

End;

3. Algorithm exercise_7;

Function Product (V1, V2: [1..20] array of integer): integer

Variable P : integer ;

Begin

P ← 0 ;

For i←1 to N do

P ← P +V1 [i] * V2 [i];

Endfor

Product← P ;

End;

26 | P a g e

Procedure Sum (V1, V2: [1..20] array of integer);

Variables S1, S2: integer;

Begin

S1=0; S2=0;

For i←1 to N do

S1 ← S1 +V1 [i];

S2 ← S2 +V2 [i];

Endfor

Write (“the sum of the elements of the vector V1 is”,S1);

Write (“the sum of the elements of the vector V2 is”,S2);

End;

Variables V1: array [1..20] of integer; V2: array [1..20] of integer; prod, N, i integer;

Begin

Repeat

Write (“Enter the real dimension of the vectors”);

Read(N);

Until (N>=1 & N<=20)

Write (“Enter the elements of the first vector V1”);

For 1←i to N do

Read (V1[i]);

Endfor

Write (“Enter the elements of the second vector V”);

For 1←i to N do

Read (V2[i]);

Endfor

prod ← Product (V1, V2);

Write (“Scalar product of the two vectors V1 and V2 is”, prod);

Sum (V1, V2);

END

27 | P a g e

4. No, we can’t;

Justification: The variables “S1 & S2”, declared to calculate the sum of the elements of the array, are

local variables . Indeed, they cannot be used in the main algorithm to compare between S1 and S2

because the space of these local variables is freed when the execution of the procedure is finished.

Solution: there are three possible solutions

a) Use S1 and S2 as parameters and pass them by variable (var S1, S2).

b) Declare S1 and S2 as global variables.

c) Use two different function the first one to calculate S1 and the second to calculate S2.

28 | P a g e

before call n=8, x=5

before call n=7, x=5

before call n=6, x=5

before call n=5, x=5

before call n=4, x=5

before call n=3, x=5

before call n=2, x=5

before call n=1, x=5

In the main algorithm

8*5=40

Part 3: Recursive sub-algorithms – Solutions-

Pedagogical objectives

Manipulate recursive sub-algorithms.

--

Solution of the exercise n°1

1st _ call (8.5);

The sub algorithm makes the product of n*x. The instruction (" after call n=", n, "x= ", x); in

the product function is never executed.

Solution of the exercise n°2

a) Iterative function
Function quotient_division (a ,b :integer):integer;

Begin

Variable S: integer; S 0;

While (a>=b) do

a a- b;

S S+ 1;

Endwhile

quotient _division  S ;End

29 | P a g e

Function quotient _ division_rec (a ,b :integer):integer;

Begin

If (a<b) then

quotient_division_rec0;

Else

quotient_division_ rec quotient_division_rec (a- b,b)+1;

Endif

End;

Algorithm Calculation ;

Variables X,Y, P : integer ;

Function GCD (a, b : integer) : integer ;

Begin

If (a = b) then // Particular case = Stopping criterion.

GCD a

Else

If (a > b) then // General case

GCD GCD (a-b, b);

else // General case

GCD GCD (a, b-a);
Endif

Endif

End;

Begin

Read (X ,Y);

If (Y≤ 0) Or (X ≤ 0) then

Write (“Numbers are not strictly positive”);

Else

P GCD (X, Y) ;

Write (“THE PGCD of”, X, Y, ‘ =', P) ;

Endif

END

b) Recursive function

Solution of the exercise n°3

30 | P a g e

Function Sum_tab (var T: Tab, n: integer) : integer ;

/* n is the number of elements in the array

Begin

If (n=1) then

Sum_tab T[1];

else

Sum_tab T[n] + Sum_tab (T, n-1);

Endif

End;

Procedure inverse_ tab (var T:tab; d, f: integer);

Variable x: integer;

Begin

If (d<f) then
x t[d];

t[d] t[f];

t[f]x;

inverse_tab (T,d +1,f-1); // Recursive call

Endif

End;

Solution of the exercise n°4

Type Tab = array [1..50] integer ;

a. Recursive function to calculate the sum of the elements of an array

b. Recursive procedure to reverse the elements of an array

Note

 d: start of the table to be reversed.

 f: end of the table to be reversed

31 | P a g e

Part 4: Pointers and linked lists – Solutions-

Pedagogical objective

 Understand the declaration, syntax and semantics of pointers, among others: indirect

addressing, the content of a dynamic variable as well as arrays using pointers;

 Understand dynamic memory allocation and freeing.

Solution of the exercise n°1

A B C P1 P2

0xf0 0xf4 0xf8 0xfA 0xfC

A B C &A &B &C P1 P2 *P1 *P2
A←1, B←2, C←3
P1←&A, P2←&B 1 2 3 0xf0 0xf4 0xf8 0xf0 0xf4 1 2

P2= &C 1 2 3 0xf0 0xf4 0xf8 0xf0 0xf8 1 3
*P1 = *P2 3 2 3 0xf0 0xf4 0xf8 0xf0 0xf8 3 3
(*P2)++ 3 2 4 0xf0 0xf4 0xf8 0xf0 0xf8 3 4
P1= P2 3 2 4 0xf0 0xf4 0xf8 0xf8 0xf8 4 4
P2= &B 3 2 4 0xf0 0xf4 0xf8 0xf8 0xf4 4 2
*P2 = *P1 - 2**P2 3 0 4 0xf0 0xf4 0xf8 0xf8 0xf4 4 0

(*P2)-- 3 -1 4 0xf0 0xf4 0xf8 0xf8 0xf4 4 -1
C = (P2 == &C) 3 -1 0 0xf0 0xf4 0xf8 0xf8 0xf4 0 -1
*P2= *P1 + A 3 3 0 0xf0 0xf4 0xf8 0xf8 0xf4 0 3

32 | P a g e

Algorithm Exercise1 ;

Type Student = Record

N_Registration: integer;

Last_name: string (20); First_name: string (20);

Res: real;

EndRecord

Variables pi: * int; // pointer to an integer.

pr:*real; // pointer to real.

pc: * character; // pointer to character.

pe: * Student; // pointer to a student record.

i: int; r: real; c: character; e: Student;

Begin

pi ←&i ; pr ← &r ; pc ← &c ; pe ← &e ;

Write ("enter an integer"); Read (*pi);

Write ("enter a real"); Read (*pr);

Write ("enter a character"); Read (*pc);

Write ("enter student’s information :");

Write (“enter the registration number”); Read ((*pe). N_Registration);

Write ("enter the name"); Read ((*pe). Last_name);

Write ("enter the first name"); Read ((*pe). First_name);

Write ("enter the result"); Read ((*pe).Res);

End

Solution of the exercise n°2

int A[]= {12, 23, 34, 45, 56, 67, 78, 89, 90}; int *P; P = A;

a) *P+2 => the value 14

b) *(P+2) => the value 34

c) &P+1 => the address of the pointer behind the pointer P (rarely used)

d) &A[4]-3 => the address of element A[1]

e) A+3 => the address of element A[3]

f) &A[7]-P => the value (index) 7

g) P+(*P-10) => the address of element A[2]

h) *(P+*(P+8)-A[7]) => the value 23

Solution of the exercise n°3

33 | P a g e

Solution of the exercise n°4

Algorithm invert_Array;

Variables tab = Array [1..50] integer;

N, HELP: integer;

P1: * integer; P2: *integer; /*helper pointers*/
Begin

/* Data entry */
Repeat

Write ("enter the dimension of the array: ");

Read (N);

Until (N>=1) and (N<=50);

For (P1=tab) to (tab+N) do

// Equivalent to (For i=1 to N do)

// Just to show indirect (pointer) addressing manipulation

Read (*P1);

// we did not use the address operator &, however, we used the pointer P1 which contains

an address to tab[i]; (indirect addressing)

EndFor

// Display the array

For (P1=tab) o (tab+N) do

Write (*P1);
EndFor

//Reverse array elements

P1 ← tab; P2 ← tab+N;

While (P1<P2) do

HELP ← *P1 ;

*P1 ← *P2;

*P2←HELP;

P1 ← P1+1;

P2 ← P2-1;

EndWhile

// Display result

34 | P a g e

TypeDate=Record

dd: integer;

mm: integer;

aa: integer;

EndRecord

TypeEmployer= Record

Last_name: string(20);

First_name: string (20);

Date_B: Date;

Nb_E: integer;

Qualif: string (30);

EndRecord

Employer_list=Array [1…300] of * Employer;

Algorithm Employers;

TypeDate=Record

dd: integer;

mm: integer;

aa: integer;

EndRecord

Type Employer= Record

Last_name: string(20);

First_name: string (20);

Date_B: Date;

Nb_E: integer;

Qualif: string (30);

Solution of the exercise n°5

1. Data structures

2. Algorithm to enter data

For (P1=tab) to (tab+N) Do

Write (*P1);

EndFor

END

35 | P a g e

EndRecord

Employer_list=Array [1..300] of *Employer; //Array of pointers to employers.

Variables i: integer, Bool: boolean; Char: character; L: Employer_list;

Begin

i ← 1 ; Bool ← true;

While (Bool = true) and (i<=300) do

Allocate (L[i]);

// L[i] is a pointer to an employer, it is the memory allocation of a dynamic employer type

variable whose pointer is L[i].

Write (“'Employer n°'', i);

Write ("Give the last name: ");

Read ((*L[i]).Last_name);

Write ("Give the first name: ");

Read ((*L[i]).First_name);

Write ("Give the date of birth: ");

Write ("Give the day: "); Read ((*L[i]). Date_B.dd);

Write ("Give the month: ");Read ((*L[i]).Date_B.mm);

Write ("Give the year: "); Read ((*L[i]). Date_B.yy);

Write ("Give the number of children: "); Read ((*L[i]).Nb_E);

Write ("Give the qualification: "); Read ((*L[i]).Qualif);

Repeat

Write (“are there other employers Y/yes/N/no?”);

Read (Char);

Until (Char = ‘Y’) or (Char = ‘N’)

If (Char = 'Y') then

i ← i +1;

else

Bool ← false;

Endwhile

END.

36 | P a g e

3. Algorithm for sorting employers

Algorithm Sort_Employers;

Employer_list=Array [1..300] of *Employer; //Array of pointers to employers.

Variables N, Pc: integer;

// N number of employers entered in the previous algorithm =i

L: Employer_list; P1, P2: *Employer; Aux: Employer;
Begin

For (P1=L) to (L+N-1) do

For (P2=P1+ 1) to (L+N) do

If ((*P1). Date_B .yy) < ((*P2). Date_B .yy) then

Aux ← (*P1); (*P1)

← (*P2);

(*P2) ← Aux ;
else

If ((*P1).Date_B .yy)= ((*P2).Date_B .yy) then

If ((*P1). Date_B .mm) < ((*P2). Date_B .mm) then

Aux ← (*P1);

(*P1) ← (*P2);

(*P2) ← Aux ;
else

If ((*P1). Date_B .mm)= ((*P2). Date_B .mm) then

If ((*P1). Date_B .dd) < ((*P2). Date_B .dd) then

Aux ← (*P1);

(*P1) ← (*P2);

(*P2) ← Aux ;

EndFor

EndFor

End if

End if

End if

End if

End if

// Number of employers selected

37 | P a g e

Pc← (N DIV 10); P1 ← L;

For (P1 = L+Pc) to (L+N) Do

Free (P1) ;

EndFor

End

Solution of the exercise n°6

Algorithm Exercise_2 ;

Variables T : array [1..100] integer ; P, P1:*integer ;

Begin

For P=T to (T+100) do (1.5 pt)

Read (*P);

Endfor

Allocate (P1); (1 pt)

*P1←1;

For P=T to (T+100) do

If ((*P) mod 3 = 0) then (2 pts)

Write("The index is”,P-T);

*P1←*P1 * *P;

End If

Endfor

End

38 | P a g e

Solution of the exercise n°7

Algorithm Find_indexes_odd ;

Variables T : array [1..100] integer ; P, P1:*integer ;

Begin

For P=T to (T+100) do

Read (*P);

Endfor

Allocate (P1);

*P1←0;

For P=T to (T+50) do

If ((*P) mod 2 != 0) then

Write("index of the odd number is”,P-T);

*P1←*P1+*P;

Endif

End

Solution of the exercise n°8

Type Element = Record

Info: real;

Next: *Element;

End;

Type List: *Element;

End;

// Declarations

Variables head, P, L: List;

flag: boolean;

add_element: char;

k, i: integer;

val: real;

39 | P a g e

Begin

// Create the list **

head ← Nil;

flag ← true;

While (flag = true) do

Allocate (P); // allocate memory space

Write ("Enter the value of the element");

Read ((*P).Info);

(*P).Next ← head;

head ← P;

// Confirm whether to add another element

Write ("Are there more elements? Y/N");

Read (add_element);

If (add_element = "N") Then

flag ← false;

EndIf

EndWhile

// Display list elements ***

P ← head; // point to the first element

While (P ≠ Nil) do // traverse from first to last element

Write ((*P).Info); // display the element

P ← (*P).Next; // move to next

EndWhile

// Insert an element at the K-th position ******************************

Write ("Enter the position");

Read (k);

Write ("Enter the value to insert");

Read (val);

40 | P a g e

L ← head;

If (k = 0) Then // insertion at the head

Allocate (P);

(*P).Info ← val;

(*P).Next ← head;

head ← P;

Else

i ← 0;

While (i < k) and (L ≠ Nil) do

L ← (*L).Next;

i ← i + 1;

EndWhile

If (i = k) and (L ≠ Nil) Then

Allocate (P);

(*P).Info ← val;

(*P).Next ← (*L).Next;

(*L).Next ← P;

Else

Write ("Position does not exist");

EndIf

EndIf

// Delete a given element from the list ********************************

If (head ≠ Nil) then

If ((*head).Info = val) then // delete first element

P ← head;

head ← (*P).Next;

Free (P); // free memory

Else

flag ← false;

Prev ← head;

P ← (*head).Next;

41 | P a g e

While (P ≠ Nil) and (flag = false) do

If ((*P).Info = val) Then

flag ← true;

Else

Prev ← P;

P ← (*P).Next;

EndIf

EndWhile

If (flag = true) Then

(*Prev).Next ← (*P).Next;

Free (P);

Else

Write ("Value does not exist");

EndIf

EndIf

Else

Write ("The list is empty");

EndIf

End

39 | P a g e

Section 2: Practical work -Exercises-

Part 1 : Records

Pedagogical objectives

 Handle custom types in C language, in terms of declaration and processing.

Exercise n°1

Write a C program that defines three structures Point (fields: X and Y), Circle (Fields: X, Y,

R) and Rectangle (Log, Lag). The program must read and display the respective fields of the

Point, Circle and Rectangle structure type variables (point p1, circles c1, rectangles R1).

Exercise n°2

An industrial carpentry manages a stock of wooden panels. Each panel has a width, length

and thickness in millimeters, as well as the type of wood which can be pine (code 0), oak

(code 1) or beech (code 2).

1. Define a panel record containing all the information relating to a wooden panel;

2. Write a C program that allows you to

- enter and display a wood panel (numeric entry for the type of wood (eg: 0), display in

characters of the type of wood (eg: pine);

- Calculate the volume of a panel ((thickness*width*length)/10 9).

40 | P a g e

Exercise n° 3

Consider the following structures (records):

- Date defined by the three fields: day, month and year;

- Address defined by the fields: Number, Street, Municipality, Wilaya, Postal Code;

- Employee defined by the fields: LastName, FirstName, Residence, DateBirth

Write a C program that allows you to enter employee information from the keyboard and check:

 whether an employee was born before a given year;

 if an employee resides in a given wilaya.

41 | P a g e

Part 2: Sub-algorithms

Pedagogical objectives

 Handle procedures & functions in C;

Exercise n°1

- Write function int power(int x, int y) which takes two integer parameters � and � and

returns � � . Also give an example of calling this function by writing a main function in

which you display the calculation result.

- Same question, but this time we want to pass the result by variable. The function header

therefore becomes void power(int x, int y, int *r).

- Write a division function that performs integer division and returns both the quotient and

remainder by variable, and the main function that calls it.

Exercise n°2

- Write a function grab that allows you to grab an array of integers.

- Write a function display that displays the elements of the array.

- Write a function calculate_average, which allows you to calculate the average of the

elements of an array.

- Write a function find_min_max, which allows you to find the minimum and maximum

between the elements of an array.

- Write the main program.

42 | P a g e

NB : the solution must include subprograms.

Exercise n°3

F is a numerical function defined by F(X) = X 3 -2X+1 . We want to construct an

array of values of this function. The user enters the number N of values as well

as the values of X. Write a program that matches this processing.

Example:

Enter an integer between 1 and 100: 9

Enter 9 real numbers: |-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |

X | -4.0 | -3.0 |-2.0 |-1.0 | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 |

F(X) |- 55.0|- 20.0| -3.0| 2.0 |1.0 |0.0 | 5.0 | 22.0| 57.0|

43 | P a g e

Part 3 : Recursive sub-algorithms

Pedagogical objectives

 Handle recursive procedures & functions in C;

Exercise n°1

Write in C a recursive function allowing you to calculate Xn for X real and n natural

integer.

Write a recursive function in C to calculate X! for integer X.

Exercise n°2

We consider the mathematical Ackermann function F of two real variables x and y, defined

as follows:

F(x, y) = y+1 if x=0 ;

F(x, y) = F(x-1, 1) if x > 0 and y = 0 ;

F(x, y) = F(x-1, F(x, y-1)) if x And y are different of 0.

Write a recursive program in C which requests the two values x and y and displays the value of

F (x, y).

Exercise n°3

We consider the mathematical Fibonacci function F defined as follows:

 F(0) = 0; F(1) = 1

 F(n) = F (n−1) + F (n−2) For n > 1

Write a recursive program in C that asks for an integer value n and displays the value of F(n).

Part 4: Pointers and linked lists

44 | P a g e

main(){

int x,y; char a,b ; float f ;

int *pi1, *pi2;

char *pc1, *pc2 ;

float *pf1, *pf2;

x=10; y = 9; a='K'; b='S'; f=1.5;

pi1=&x; pi2=& y; pc1=&a; pc2=&b ; pf1=&f; pf2=pf1 ;

printf(" Addresses in hexadecimal: pi1 = %X pi2 = %X \n", pi1, pi2);

printf(" Addresses in decimal: pi1 = %d pi2 = %d \n", pi1, pi2);

printf ("pc1= %d pc2= %d \n", pc1, pc2);

printf ("pf1= %d pf2= %d \n", pf1, pf2);

}

Pedagogical objective

 Manipulate pointers in C, pointer arithmetic and addressing the elements of an array;

 Apply the “malloc” and “free” functions for dynamic memory allocation and release.

Exercise n°1

Write a C program that uses the notion of pointer to read two integers and calculate their sum.

Exercise n°2

sizeof (T type) function returns the number of bytes necessary to encode, in memory, a

dynamic variable of type T.

1. Using this function, write a program that determines the number of bytes occupied by:

 A character.

 An integer (short and long).

 A boolean;

 A real.

 The string “1234567”.

2. What do you notice about the size of the string?

Exercise n°3

Consider the following program:

45 | P a g e

1. Write a C program, allowing you to display the result of the following operations:

a) Increment of pointers pi1, pc1 and pf1;

b) Decrement of pointers pi1, pc1 and pf1;

c) Difference between: pi1 and pi2, pc1 and pc2, pf1 and pf2;

d) Addition of: pi1 and pi2, pc1 and pc2, pf1 and pf2.

2. Which of the above operations are not allowed for pointers.

Exercise n°4

Using the pointer formalism, write a C program that reads two arrays A and B and their

dimensions N and M, then adds the elements of B to the end of A.

Exercise n°5

Write a C program that reads an integer X and an array A of type integer and eliminates all

occurrences of X in A by packing the remaining elements. The program will use a pointer

P1.

Exercise n° 6

Write a C program using pointers that constructs a unitary matrix with dimension N (given

by the user).

NB: a unitary matrix is a square matrix whose diagonal elements are equal to 1 and the other

elements are zero.

46 | P a g e

#include <stdio.h>

typedef struct Point

{ float x,y;

} Point;

typedef struct Circle

{ float xc;

float yc ;

float radius;

} Circle ;

typedef struct Rectangle

{ float Log, Lag ;

} Rectangle;

main ()

{

Point p1;

Circle c1;

Rectangle R1;

Section 2: Practical work -Solutions-

Part 1 : Records – Solutions-

Pedagogical objectives

 Handle custom types in C language, in terms of declaration and processing.

Solution of the exercise n°1

47 | P a g e

#include <stdio.h>

#include <math.h>

typedef struct panel{

float width , length, thickness ;

int typeWood ; }panel ;

main

(){ panel

p; float Vol;

printf ("\n Enter panel width: ");

scanf ("%f", &p.width);

printf ("\n Enter panel length: ");

scanf ("%f",&p.length);

printf ("\n Enter panel thickness : ");

scanf ("%f",&p.thickness);

printf ("\n give the type of wood: ");

scanf ("%d", &p. typeWood);

printf ("\n panel width: %.2f", p.width);

printf ("\n panel length: %.2f", p.length);

printf ("\n panel thickness : %.2f", p.thickness);

printf ("\n wood type: ");

switch(p.typeWood){

Solution of the exercise n°2

printf ("Enter the fields of point p1: \n");

scanf ("%f%f",&p1.x,&p1.y) ;

printf (" Show the fields of point p1: [%f , %f]\n", p1.x, p1.y);

printf (" \n") ;

printf (" Enter the fields of circle c1: \n");

scanf (" %f %f %f",&c1.xc,&c1.yc,&c1.radius) ;

printf (" Show the fields of circle c1: [%f, %f, %f]\n", c1.xc,

c1.yc,c1.radius);

printf (" \n") ;

printf (" Enter the fields of rectangle R1: \n");

scanf ("%f%f",&R1.Log,&R1.Lag) ;

printf ("Show the fields of rectangle R1: [%f, %f]\n", R1.Log,

R1.Lag);

printf (" \n") ;}

48 | P a g e

#include <stdio.h>

#include <string.h>

typedef struct Date {

int day, month, year ;

} Date;

typedef struct

Address{ int

Number,PostalCode ;

char Street[20], Commune[20], Wilaya[20];

} Address;

typedef struct NP{

char Lastname[20], Firstname [20];

} NP;

typedef struct Employee

{ NP FirstName;

Date BirthDate;

Address Residence;

} Employee ;

main(){ Empl

oyee E; int

ann ;

char w []="ALGER";

printf ("\n Employee name : ") ;

scanf ("%s",&E.FirstName.Lastname);

printf ("\n Employee first name : ");

Solution of the exercise n°3

case 0: printf ("pin\n");

break;

case 1: printf (" oak \n");

break ;

case 2: printf (" beech \n");

break ;

default : printf ("unknown\n");

break ;}

Vol = (p.width * p.length * p.thickness)/pow(10,9);

printf ("\n panel volume is: %f", Vol);

}

49 | P a g e

scanf ("%s", &E.FirstName.Firstname);

printf ("\n Date of birth:\n");

printf ("Day: ");

scanf ("%d", &E.BirthDate.day);

printf ("\n Month:");

scanf ("%d", &E.BirthDate.month);

printf ("\n Year : ");

scanf ("%d", &E.BirthDate.year);

printf ("\n Employee residence :\n") ;

printf (" Number :");

scanf ("%d", &E.Residence.Number);

printf ("\n Street : ");

scanf ("%s",&E.Residence.Street);

printf ("\ nCommon : ");

scanf ("%s", &E.Residence.Commune);

printf ("\n Wilaya : ");

scanf ("%s",&E.Residence.Wilaya);

printf ("\ n PostalCode : ");

scanf ("%d", &E.Residence.PostalCode);

printf ("\n Give year : ");

scanf ("%d", &ann);

if(E.BirthDate.year < ann){

printf ("\n employee was born before year %d \n", ann); }

else {

printf ("\n employee was born after year %d \n", ann);}

printf ("Enter Wilaya \n");

scanf ("%s",&w);

if(strcmp

(E.Residence.Wilaya,w)==0){ printf

("Yes\n");}

else {

printf ("No\n");

}

}

50 | P a g e

#include<stdio.h>

int power(int x, int y)

{

int result =1,i;

for(i =0;i< y;i ++)

result = result *x;

return result ;

}

int main()

{

int x=2 ,y =3,r;

r=power(x ,y);

printf("%d power %d = %d\n", x,y,r);}

Part 2: Sub-algorithms – Solutions-

Pedagogical objectives

 Handle procedures & functions in C;

Solution of the exercise n°1

1.

2.

51 | P a g e

#include <stdio.h>

void division(int a, int b, int * q, int * r)

{

*r = a % b;

*q = a / b;

}

int main()

{

int a=17, b=3, q, r;

division(a,b,&q,&r);

printf ("%d=%d*%d+%d\n", a,b,q,r);

}

#include <stdio.h>

/*function prototypes*/

void grab(int [],int);

3.

Solution of the exercise n°2

#include <stdio.h>

void power(int x,int y,int*r)

{

int i ;

*r=1;

for(i =0;i< y;i ++)

*r = *r*x;

}

int main()

{

int x=4 ,y =5,r;

power(x ,y ,&r);

printf ("%d power %d = %d\n" , x,y,r);

}

52 | P a g e

void display(int [],int);

float calculate_average (int[],int);

void find_min_max (int [], int , int *, int *);

main()

{

int nb_val ;

int min, max, table[100];

float average;

printf ("Number of elements:"); scanf ("%d", & nb_val);

grab(table, nb_val);

display(table, nb_val);

average = calculate_average (table , nb_val);

printf ("Average = %f\n", average);

find_min_max(table, nb_val , &min, &max);

printf ("Min = %d Max = %d\n", min, max);

}

/* entry of array elements */

void grab(int tab[], int nb)

{

int i ;

printf ("\n");

for (i =0; i < nb ; i ++)

{

printf ("Value of tab[%d] = ", i);

scanf ("%d", &tab[i]);

}

}

/* Displaying array elements */

void display (int tab[], int nb)

{

int i ;

printf ("\n");

for (i =0; i < nb ; i ++)

{

53 | P a g e

printf ("tab[%d] = %d\n", i , tab[i]);

}

printf ("\n");

}

/* Calculating the average */

float calculate_average (int tab[], int nb)

{

float average;

int sum;

int i;

sum = 0;

for (i =0; i < nb ; i ++)

{

sum = sum + tab[i];

}

average = sum /(double (nb));

return average;

}

/* the min and max of the array */

void find_min_max (int tab [], int nb, int *pmin , int *pmax)

{

int val_min , val_max ;

int i ;

val_min = tab[0];

val_max = tab[0];

for (i =0; i < nb ; i ++)

{

if (tab[i] < val_min)

{

val_min = tab[i];

}

else if (tab[i] > val_max)

{

val_max = tab[i];

54 | P a g e

#include <stdio.h>

/* Prototypes of functions n */

void ACQUIRE(int *);

float F(float);

void READ_VECTOR (float[], int N);

void CALCULATE_VALUES(float [], float [], int N);

void DISPLAY_TABLE (float [], float [], int N);

main()

{

/* Declaration of global variables */

float X[100]; /* values of X */

float V[100]; /* values of F(X) */

int Nb;

/* Function calls */

ACQUIRE(&Nb); /* 1 <= Number <= 100 */

READ_VECTOR(X, Nb);

CALCULATE_VALUES(X, V, Nb);

DISPLAY_TABLE(X, V, Nb);

}

/* Definition of the ACQUIRE function */

void ACQUIRE(int *N)

{

do

{

printf ("Enter an integer between 1 and 100: ");

scanf ("%d",N);

Solution of the exercise n°3

}

}

*pmin = val_min ;

*pmax = val_max ;

}

55 | P a g e

} while ((*N<1)||(*N>100));

}

/* Definition of the READ_VECTOR function */

void READ_VECTOR (float T[], int N)

{

/* Fills an array T of order N with real numbers entered from

the keyboard */

/* Declaration of local variables */

int I;

/* Fill the array */

printf ("Enter %d real numbers:\n", N);

for (I=0; I<N; I++)

scanf ("%f", &T[I]);

}

/* Definition of function F */

float F(float X)

{

/* Returns the numerical value of the polynomial defined by F(X)

= X^3-2X+1 */

return (X*X*X - 2*X + 1);

}

/* Definition of the CALCULATE_VALUES function */

void CALCULATE_VALUES(float X[], float V[], int N)

{

/* Declaration of local variables */

int I;

for (I=0; I<N; I++)

{

V[I] = F(X[I]);

}}

/* Definition of the DISPLAY_TABLE function */

void DISPLAY_TABLE(float X[], float V[], int N)

{

/* Declaration of local variables */

56 | P a g e

int I;

/* Show table */

printf ("\nX: ");

for (I=0; I<N; I++)

printf ("%f", X[I]);

printf ("\nF(X): ");

for (I=0; I<N; I++)

printf ("%f", V[I]);

printf ("\n");}

57 | P a g e

#include <stdio.h>
int factorial (int);
int power(int,int);
main()
{

int x, n;
printf ("Enter an integer: x = "); scanf ("%d",&x);
printf ("Enter an integer: n = "); scanf ("%d",&n);
printf ("%d",factorial (n));
printf ("\n %d ",power(x,n));

}
int factorial(int m)
{
if (m==0)
{
return 1;
}
else
{
return (m* factorial(m-1));
}
}
int power(int r, int k)

Part 3 : Recursive sub-algorithms -Solutions-

Pedagogical objectives

 Handle recursive procedures & functions in C;

Solution of the exercise n°1

58 | P a g e

#include <stdio.h>
int Ackermann(int,int);
main()
{
int x, y;
printf ("Enter an integer: x = "); scanf ("%d",&x);
printf ("Enter an integer: y = "); scanf ("%d",&y);
printf ("result %d", Ackermann(x,y));
}
int Ackermann(int M,int N)
{ if(M == 0)
return N+1;
else
if(N==0 && M>0)

return (Ackermann(M-1,1));
else

return (Ackermann(M-1,(Ackermann(M, N-1))));
}

#include <stdio.h>
int Fibonacci (int);
main()
{
int x;
printf ("Enter an integer: x = ");
scanf("%d",&x);
printf("result %d", Fibonacci(x));
}
int Fibonacci (int N)
{ if(N == 0) return 0; else
{

Solution of the exercise n°2

Solution of the exercise n°3

{
if (k==0)
{
return 1;
}
else
{
return (r*power(r,k-1));
}
}

59 | P a g e

if(N == 1) return 1;
else return (Fibonacci (N-1)+ Fibonacci (N-2));
}
}

60 | P a g e

#include<stdio.h>

main()

{

int a,b,s;

int *pa,*pb,*ps;

pa = &a;

pb = &b;

ps = &s;

printf("Give two integers:\n");

scanf("%d%d",pa,pb);

*ps = *pa + *pb;

printf("The sum is %d.\n",s);

}

Part 4: Pointers and linked lists – Solutions-

Pedagogical objective

 Manipulate pointers in C, pointer arithmetic and addressing the elements of an array;

 Apply the “malloc” and “free” functions for dynamic memory allocation and release.

Solution of the exercise n°1

61 | P a g e

#include <stdio.h>

main()

{

printf("The size of a character is %d byte(s)", sizeof(char));

printf("\n"); printf("The size of an integer short is %d

byte(s)", sizeof(short));

printf("\n"); printf("The size of a long integer is %d

byte(s)", sizeof(long));

printf("\n"); printf("The size of a real number is %d byte(s)",

sizeof(float));

printf("\n"); printf(" The size of the character string %s is

%d byte (s)","1234567",sizeof("1234567"));}

Solution of the exercise n°2

1. ​

2. For the string: the number of characters in the string is 7, however the number of bytes to

reserve is 8. The last byte is reserved for the end of string character “\0”.

Solution of the exercise n°3
1.

62 | P a g e

#include <stdio.h>

main(){

int x,y; char a,b ; float f ;

int *pi1, *pi2;

char *pc1, *pc2 ;

float *pf1, *pf2;

x=10; y = 9; a='K'; b='S'; f=1.5;

pi1=& x; pi2=& y; pc1=& a; pc2=& b ; pf1=& f; pf2=pf1 ;

printf(" Addresses in hexadecimal: pi1 = %X pi2 = %X \n", pi1,

pi2);

printf(" Addresses in decimal: pi1 = %d pi2 = %d \n", pi1, pi2);

printf("pc1= %d pc2= %d \n", pc1, pc2);

printf("pf1= %d pf2= %d \n", pf1, pf2);

// Increment

printf(" pi1 +1 = %d \n", pi1++);

63 | P a g e

printf(" pi2 +1 = %d \n", pi2++);

printf(" pc1 +1 = %d \n", pc1++);

printf(" pc2 +1 = %d \n", pc2++);

printf(" pif +1 = %d \n", pf1++);

printf(" pf2 +1 = %d \n", pf2++);

// Decrement

// Difference

printf(" pi1 - pi2 = %d \n", pi1 - pi2);

printf("pc1 - pc2= %d \n", pc1 - pc2);

printf("pf1 - pf2= %d \n", pf1 - pf2);

}

Adding an integer to a pointer. The result is a pointer of the same type as the starting pointer;

Subtracting an integer from a pointer. The result is a pointer of the same type as the starting

pointer;

The difference of two pointers both pointing to objects of the same type. The result is an integer.

The sum of two pointers is not allowed.

#include <stdio.h>

#include <stdlib.h>

int main()

{

int *A,*B; int n,m,i;

printf("Give the dimension of A:");

scanf("%d",&n);

printf("Give the dimension of B:");

scanf("%d",&m);

printf(" pi1 -1 = %d \n", pi1--);

printf(" pi2 -1 = %d \n", pi2--);

printf(" pc1 -1 = %d \n", pc1--);

printf(" pc2 -1 = %d \n", pc2--);

printf(" pif -1 = %d \n", pf1--);

printf(" pf2 -1 = %d \n", pf2--);

2. Sum or addition is not allowed

Solution of the exercise n°4

64 | P a g e

#include <stdio.h>

#include <stdlib.h>

main()

{

/* Declaration */

int *A;

int N,i;

int X;

int k=0;

int *P1;

Solution of the exercise n°5

A=(int*)malloc(n*sizeof(int));

for (i=0;i<n;i++)

{

printf("A[%d]=",i);

scanf("%d",&A[i]);

}

B=(int*)malloc(m*sizeof(int));

for (i=0;i<m;i++)

{

printf("B[%d]=",i);

scanf("%d",&B[i]);

}

A=(int*)realloc(A,(n+m)*sizeof(int));

for (i=n;i<n+m;i++)

A[i]=B[i-n];

printf("The array after fusion \n");

for (i=0;i<n+m;i++)

printf ("A[%d]=%d \n",i,A[i]);

free (A);

free (B);

return 0;

}

65 | P a g e

#include <stdio.h>

#include <stdlib.h>

main()

{

/* Declaration */

int **U; /* unitary matrix */

int N; /* dimension */

int I, J;

Solution of the exercise n°6

printf("Give the dimension of the array : ");

scanf("%d", &N);

A=(int*)malloc(N*sizeof(int));

for (i=0; i<N; i++)

{

printf("A[%d] : ", i);

scanf("%d", &*(A+i));

}

printf("Introduce element X to eliminate from the array : ");

scanf("%d", &X);

P1=A;

for (i=0; i<N; i++)

if (A[i] != X)

{

P1[k] = A[i];

k++;

}

/* Display the result */

for (i=0; i<k; i++)

printf("%d ", A[i]);

printf("\n");

free (A);

}

66 | P a g e

printf("Dimension of the square matrix: ");

scanf("%d", &N);

/* Square matrix memory reservation */

U = (int**) malloc (N * sizeof(int*));

for (I = 0; I < N; I++)

U[I] = (int*) malloc (N * sizeof(int));

/* Construction of the unitary square matrix */

for (I=0; I<N; I++)

for (J=0; J<N; J++) if (I==J)

U[I][J]=1;

else

U[I][J]=0;

/* Display the result */

printf("Unitary dimension matrix %d :\n", N);

for (I=0; I<N; I++)

{

for (J=0; J<N; J++)

printf("%7d", U[I][J]); printf("\n");

}

for (I=0; I<N; I++)

free(U[I]); free(U);

}

67 | P a g e

Bibliography

1. Neumann, Günter. "Programming languages in artificial intelligence." Encyclopedia

of Information Systems (2002): 31-45.

2. Barnett, Granville, and Luca Del Tongo. "Data structures and algorithms: annotated

reference with examples." Pierrefonds, CA, NETSlackers (2008).

3. Karumanchi, Narasimha. Data Structures and Algorithmic Thinking with Python.

CareerMonk Publications, 2016.

4. Canning, John, Alan J. Broder, and Robert W. Lafore. Data Structures & Algorithms

in Python. Addison-Wesley, 2023.

5. Pierce, Benjamin C., ed. Advanced topics in types and programming languages. MIT

press, 2024.

6. LANGLOIS, Ph. (2013). Programmation en C – Exercices. Université de Perpignan

Via Domitia

7. Helaoui, M. (2011). Travaux Dirigés : Algorithmique et Structure de

Données. 10.13140/2.1.3800.9601.

8. Helaoui, M. (2019).ASDI 2019 2020 v6.pdf.

https://www.researchgate.net/publication/337873900_ASDI_2019_2020_v6pdf

https://www.researchgate.net/publication/337873900_ASDI_2019_2020_v6pdf

	Preamble
	Section 1: Tutorials -Exercises-
	Part 1 : Records
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercice n°5

	Part 2: Sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n° 2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n°6
	Exercise n°7
	Exercice n°8

	Part 3: Recursive sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5

	Part 4: Pointers and linked lists
	Pedagogical objective
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n°6
	Exercice n°7
	Exercice n°8
	We want to build a list of elements defined by rea
	Using the singly linked list data structure, write
	a) Creating the list of elements.
	b) Displaying the list of elements.
	c) Inserting an element at the K-th position in th
	d) Deleting a given element from the list.

	Section 1: Tutorials -Solutions-
	Part 1: Records - Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°4
	Solution of the exercise n°4

	Part 2: Sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n° 3
	Solution of the exercise n°4
	Solution of the exercise n° 5
	Solution of the exercise n°6
	Solution of the exercise n°7

	Part 3: Recursive sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4

	Part 4: Pointers and linked lists – Solutions-
	Pedagogical objective
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4
	Solution of the exercise n°5
	Solution of the exercise n°6
	Solution of the exercise n°7
	Solution of the exercise n°8
	Type Element = Record
	 Info: real;
	 Next: *Element;
	End;
	Type List: *Element;
	End;
	// Declarations
	Variables head, P, L: List;
	 flag: boolean;
	 add_element: char;
	 k, i: integer;
	 val: real;
	Begin
	// Create the list *******************************
	head ← Nil;
	flag ← true;
	While (flag = true) do
	 Allocate (P); // allocate memory space
	 Write ("Enter the value of the element");
	 Read ((*P).Info);
	 (*P).Next ← head;
	 head ← P;
	 // Confirm whether to add another element
	 Write ("Are there more elements? Y/N");
	 Read (add_element);
	 If (add_element = "N") Then
	 flag ← false;
	 EndIf
	EndWhile
	// Display list elements *************************
	P ← head; // point to the first element
	While (P ≠ Nil) do // traverse from first to last
	 Write ((*P).Info); // display the element
	 P ← (*P).Next; // move to next
	EndWhile
	// Insert an element at the K-th position ********
	Write ("Enter the position");
	Read (k);
	Write ("Enter the value to insert");
	Read (val);
	L ← head;
	If (k = 0) Then // insertion at the head
	 Allocate (P);
	 (*P).Info ← val;
	 (*P).Next ← head;
	 head ← P;
	Else
	 i ← 0;
	 While (i < k) and (L ≠ Nil) do
	 L ← (*L).Next;
	 i ← i + 1;
	 EndWhile
	 If (i = k) and (L ≠ Nil) Then
	 Allocate (P);
	 (*P).Info ← val;
	 (*P).Next ← (*L).Next;
	 (*L).Next ← P;
	 Else
	 Write ("Position does not exist");
	 EndIf
	EndIf
	// Delete a given element from the list **********
	If (head ≠ Nil) then
	 If ((*head).Info = val) then // delete first e
	 P ← head;
	 head ← (*P).Next;
	 Free (P); // free memory
	 Else
	 flag ← false;
	 Prev ← head;
	 P ← (*head).Next;
	 While (P ≠ Nil) and (flag = false) do
	 If ((*P).Info = val) Then
	 flag ← true;
	 Else
	 Prev ← P;
	 P ← (*P).Next;
	 EndIf
	 EndWhile
	 If (flag = true) Then
	 (*Prev).Next ← (*P).Next;
	 Free (P);
	 Else
	 Write ("Value does not exist");
	 EndIf
	 EndIf
	Else
	 Write ("The list is empty");
	EndIf
	End

	Section 2: Practical work -Exercises-
	Part 1 : Records
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n° 3

	Part 2: Sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3

	Part 3 : Recursive sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3

	Part 4: Pointers and linked lists
	Pedagogical objective
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n° 6

	Section 2: Practical work -Solutions-
	Part 1 : Records – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	 Solution of the exercise n°2
	 Solution of the exercise n°3

	Part 2: Sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	 Solution of the exercise n°3

	Part 3 : Recursive sub-algorithms -Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	 Solution of the exercise n°2
	Solution of the exercise n°3

	Part 4: Pointers and linked lists – Solutions-
	Pedagogical objective
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4
	Solution of the exercise n°5
	Solution of the exercise n°6

	Bibliography

