People's Democratic Republic of Algeria
Ministry of higher education and scientific research
Larbi Ben M'hidi-Oum EI Bouaghi University

i\

%
\:"’ -
_-?' o ¥
7 ™

Faculty of Exact Sciences and Natural and Life Sciences

rryaryri

-

Mathematics and Computer Science Department

Educational Handout of Tutorials and Practical

Work in Algorithms and Data Structures 2 (ADS2)

Level: 1st year “Computer science”
Proposed by:

Dr. Dehimi Nour El Houda

Academicyear: 2024-2025

Table of Contents

Preamble 4

Section 1: Tutorials -Exercises-

Part 1 : Records 2
PedagogiCal ODJECIVEScueeviiiieiiitieieie ettt ettt ettt et e et e st e eet e beeteesaesbeessasseesaessesseensesseensansesssensenseans 2
EXEICISE N1 .ttt ettt ettt et ettt e st et e et et e e st e b e e st e st e bt ente bt e st enbe st enbenneenean 2
EX@ICISE N1%2 .ttt ettt ettt a et et et e et e st et e e et e bt es e e b e e st e st e bt ent e bt e st et e st enbenneenean 2
EXE@ICISE N3 ..ottt ettt ettt et e et et et e e et e st e bt e et et e e st et e e st e st e bt e nt e bt e st et e st enbenneenean 2
EX@ICISE NP ..ottt ettt ettt ettt et e et et e e st e b e eseenbeese e st eseessenseessenseeseensessaessanseessanseessensenseensan 3
EX@ICICE NS .ottt ettt ettt et e e bt et e e be e st e e teestesseeseesse st e essesseessensesseensesseessenseessensenseensesseensans 3

Part 2: Sub-algorithms 4
PedagogiCal ODJECIVEScueeiiiiietiitieieie ettt ettt et et e et e st e e st ebeeteesbesteessesseesaessesseensesseessasessnensenseans 4
EXEICISE N1 .ttt ettt a ettt et st e st et e st et e e st et e e st en b e bt ent e bt e st et e st enbenneenean 4
EXEICISE N1 2 ..ttt ettt ettt b e e et e st et e st e s e be e st e bt e nt et e en e et e eneenteebeentenbeeneenee 4
EXEICISE NO3 .ttt ettt ettt ettt et e b e et e e st e bt e st e bt e st e b e e bt enb e st en b e b e ent et e eneenbenneentan 5
EXEICISE N4 ..ottt ettt ettt ettt et e st e et e e n s e st e et e bt es e e b e e st enb e st ent e s e st et e eneenbenneentan 5
EX@ICISE N5 .ottt ettt ettt ettt et e e e beete e beeseesbeeseesseaseessenseessensesseesseseesbanseessenseeseensenseenean 5
EX@ICISE N1%0 ..ottt ettt ettt et ettt et et e e st et e e st e s e eseenseeseessasseessenseessensesseensesseessanseessansenseensenseensan 6
EXE@ICISE N7 .ttt ettt ettt ettt e a et ea et e st e e st et e e st e bt e st e b e e st en b e bt ent e st e st et e st enbe st enean 6
EXEICICE NP8 ..ttt ettt ettt ettt eat e te s bt ea b e s bt emt et e estentesaeente st e ententeestentesseentesteennens 7

Part 3: Recursive sub-algorithms 8
PedagogiCal ODJECIVESeeeiiieietietiete ettt ettt ettt e a et st et s beeatesbesst e tesbeentesbeententeeneetesaeens 8
EXEICISE ML .ttt ettt e a ettt e e st e ea e s bt est et e sbeentesbeent et e eseentesaeentesseennenteeneans 8
EX@ICISE NO2 1.ttt ettt ettt et et et e e st esbe e st esbeebeess e s e essenseessenseeseesseseessanbeessensesseensenseensanses 8
EX@ICISE NO3 ...ttt ettt ettt ettt et e ta et e e aa e se e seesbeeseessaseessenseessenseeseesseseesbanseessenseeseensenseenean 9
EX@ICISE N4 ..ottt ettt ettt ettt ettt e bt e st et e ese e se e st esb e et e esseaseessenseeseensesseenseseesbenseessensesseensenseensan 9
EX@ICISE N5 .ttt ettt ettt et et e st et e e st esbeeseenbeeseess e seessenseessenseeseessesseessenseessenseessensenseensan 9

Part 4: Pointers and linked lists 10
PedagogiCal ODJECLIVEc.eivuieeieiieiieie ettt ettt ettt ettt ettt et et et bt n bt e ente b e entennes 10
EXEICISE N1 1.ttt ettt ettt et et e e bt et e e te e st e sbeeseesbeeseesbasseessesseessensesseessesseensensesssensenseensenes 10
EX@ICISE NO2 ..ottt ettt ettt et et e et e te e te et e e teesbesseeseesbeeseessesseessesseessensesseensesseensensesssensenseensenns 11
EX@ICISE N3 ..ottt ettt et sttt e be e bt et e s teessesbeeseesbeeseessesseessesseessenseeseensesseansensenssensenseensenns 11
EX@ICISE N4 ..ottt ettt ettt et et e et et e s te e st e sbeeseesseeseenbesseessesseessensesseensesseensensesssensenseessenns 11
EXEICISE NO5 ..ottt ettt e a et sttt et e e st et e s bt eate s bt eat e beentente e bt entesbeent e beeneentenbeenaenee 11
EXEICISE N1%0 ..ottt ettt ettt ettt s bt et e st eat e st e e st e besae et e sheent e bt ententesheenteebeententeententens 11
EX@ICICE NO7 .ottt ettt ettt s et et bt e st e b e e st e bt e st e st e e st enbeebeente bt entenbeeneenbeeneensene 12
EXEICICE MO8 ..ttt ettt ettt et e bt e n e ae e st e b e e st e st e es e enbeebeente bt entebeeneenbeeneensene 12

Section 1: Tutorials -Solutions- 13

Part 1: Records - Solutions- 13
PedagogiCal ODJECHIVESc.uiiuieeieiieiieiectieiet ettt ettt ettt e e s ae e b e teesbesbeesaenbeessensasseensasseensenseeneenes 13

1|Page

SoIution Of the EXETCISE N1 ...cviiiiiiieiieie ettt sttt ettt et e beetesbeeneesbesseenaene
SOIUtioN Of the EXETCISE N2viiiieiieiieie ettt ettt ettt et e s be et ete e beentesbeeneenbesaeeneenne
SOIUtion t0 the EXEICISE N3 ...c..iiiiiiieiieie ettt ettt et et sbe et s bt et e be e st e tesbeentesbeeneenbesseensenne
SOIUtION OF the EXEICISE NGeviieeeeeeee ettt ettt e et e e et e e eteeeteeeteeeaeeeeteeeseeesseeseeereeeseeeseeens

SOIULION OF the EXEICISE N ... e et e et e e e e et e e e e e e e e e e e eateeeeeeaneeeeas

Part 2: Sub-algorithms — Solutions-
PedagogiCal ODJECHIVESc.uicuieeieiiciieiecteet ettt ettt ettt et et e b e st e b e teesaesbeesaesseeseensasseensasseensenseeseenes
SOIUtion Of the EXETCISE N1 ..ccuiiiiiiiiiiieiieie ettt ettt ettt ettt et tesbe et e sbeeneentesneenes
SOIUtION OF the EXETCISE N2 ...uiiiieiieiieiieie ettt ettt ettt et s be et e sttt e st eat e te s bt entesbeeneensesneenes
SOIUtion Of the EXETCISE N° 3uiiuiiiiiiieiecieetee ettt st ettt st e bt et e st et e besaeentesbeentenbeeneenes
SOIULION O thE EXETCISE N4ecuiiiieiieiieiieieetete ettt et et e st e e te e b e beesaesbesssessasseessesseessenseessensesssenes
SOIUtION Of the EXETCISE N 5 ...viiuiiiieiiiiieieieetete ettt ettt ettt st esteesbesbeesaebeesaesbesssensenseensensesseenes
SOIULION O thE EXETCISE N6ecuviiieeieiieiieiiciieieee ettt ettt et e aeste e b e beesaesbesssessasseessesseessenseessensesseenes
SOIULION OF the EXETCISE N7 ..euviiiiiieiieiieiieteeitet ettt ettt ettt ettt et et e st et e s st enbesseensesbeeneenbeeneensesneenes

Part 3: Recursive sub-algorithms — Solutions-

PedagogiCal ODJECHIVESeeuireieiietieieeteet ettt ettt ettt ettt e sttt e s bt et ebe e st et e e neente s bt entenbeeneenee
SOIUtion OF the EXETCISE Neeviiiieiiitieie ettt sttt et et eaeestesbeestesbeentesteeseensesseensens
SOIULION O the EXETCISE N2viivieiiiiiieiiecie ettt ettt ettt ettt ebesre e b e sbeessesbeeseensesseensesseessensesseanes
SOIUtION O the EXETCISE N°3eiiiieiiiieiieie ettt ettt et et e et e aesteesbesteesbesbeessessesseensesseessessessaansesseensens
SOIULION OF the EXETCISE N4c.vieeieiieeieieetieteste ettt ettt et e et e et eaesteesbesteesbesseessessesseessesseessessesssansesseensens

Part 4: Pointers and linked lists — Solutions-

PedagogiCal ODJECLIVEc.eevuieeieiieiieteeee ettt ettt ettt ettt et ettt et bt n et e nb e b e entennes
SOIUtion Of the EXETCISE N1 ...cuuiieieiiiiieiieie ettt sttt ettt et te s bt e ntesbeeneenbesneenes
SOIULION OF the EXETCISE N°2eeuvieeieieieieieeieeieete ettt ettt et etesteeee e testeesbesteesbesseessessesseessesseessessesssansesseensens
SOIUtION OF the EXETCISE NO3eiiiiiieiieiieie ettt ettt ettt et et et e et teeteesbesteesbesbeessessesseessesseessessesssansesseensens
SOIULION OF the EXETCISE N4c.vieeieiieiieieetieteete ettt ettt et et e et e aesteesbesteesbesbeessessesseessesseessessesssansessennsens
SOIULION O the EXETCISE NS ...viiuiiiiieiieiieiieieeeet ettt ettt et et e et e be e e b e beesaesbesseessesseessesseesseseessensesssenes
SOIULION O thE EXETCISE N6ecuviiieeieiieiieieciieteete ettt ettt ettt e aeste e b e beesaesbesseesbesseensesseessesseessensesssenes
SOIULION OF the EXETCISE N7 ..euvieuviiieiieiieiieie ettt ettt et sat et e st et e bt e st e be s st enbesseensesbeeneenbeeneensesneenes
SOIUtION Of the EXETCISE N 8iiiiiiieiieiieiieteeitet ettt ettt ettt et et e st e be s st et e s bt entesbeeneenbeeneensesneenes
Section 2: Practical work -Exercises-
Part 1 : Records

PedagogiCal ODJECHIVESc.uiivieeieiieiieieeteet ettt ettt ettt ettt e e bt e b e s teesbesbeessenbeeseensesseensanseensenseeneenes
EXEICISE NOT ..ottt e e e et e et e e eate e e eaae e eaaeeeeteseenaeseeaaeeeeaeeeeaesesnteeeaneeeeneeas
EXETCISE N2 1niiiieiieiie ittt ettt et e tt e st e et e e bt e stbeeebeesbeessaessbeasseasbaessseasseasseesssessseesseassaesssessseesseesseenssensns

EXEICISE N1 3ottt e e e et e e s et e e e e et et e e s eaaae e e s e eaaaaeeeseaaaeeesenaaeesseaaeeeeeenaaeeeas

Part 2: Sub-algorithms
PedagogiCal ODJECHIVESc.eeuireieiieiieieeieet ettt ettt ettt st e sttt e bt e st e be e st enbeeneentesbeentenbeeneenee
EXEICISE NOT 1.ttt ettt ettt et e s bt et e s teesbesbeeseesbesseensasseessesseeseensesseensesseensensesssensenseensenes
EX@ICISE NP2 ..ottt ettt ettt ettt te e bt et e s te e st e sbeeseesseeseesbesseassesseessenseeseensesseensenseessensenseensenns

EXEICISE NO3 .. ettt ettt e e et e e e e et e e e e et e e e e e et e e e e e e e e e et e e e e e e e e e eaaeas

2|Page

Part 3 : Recursive sub-algorithms

Pedagogical ODJECIVEScccviviieiiiieiieieeicee ettt
EXEICISE N oottt e e e enaaeeas
EXEICISE NP2 ..o e e e et e e e e e e e e

EXEICISE NO3 .. e e e e e e e e e e e e

Part 4: Pointers and linked lists

Pedagogical ODJECHIVEcvuieeieiiciieiecie et
EXCICISE NOL ..ottt ettt e e et e et e eeareeeeareean
EXCICISE NO2 ..ottt etee et et e e et e et e eeareeeeareean
EXCICISE NO3 ...ttt e e et e e eaeeeereeeeareean
EXEICISE N ...ttt et e e et e e enaeeeeneeean
EXEICISE N5 ..ottt ettt e e e et eera e e eaeeeenaeeeeneeean

EXEICISE N Ot

Section 2: Practical work -Solutions-

Part 1 : Records — Solutions-

Pedagogical ODJECLIVESccueeieiieeieiieiieieceee e
Solution of the €Xercise N1oviiiiiiiiiiiiiieeeeeee e
Solution Of the EXEICISE N2ooii i

Solution 0f the EXEIrCISE NO3ooiiiieie e

Part 2: Sub-algorithms — Solutions-

Pedagogical ODJECIVEScccviiiieiiiicieie ettt
Solution of the €XerciSe N1 . .c.uuviiiiiiiiiiiieiiee e
Solution of the EXEIrCISE NO2 . ..cuuviiiiiiiiiii e

Solution 0f the EXErCISE N3oiiiieeeee e

Part 3 : Recursive sub-algorithms -Solutions-

Pedagogical ODJECIVESccviviieiiiieieie ettt
Solution of the €Xercise N1oiii i
Solution Of the EXEIrCISE NO2uiiiiieeieeeeeeeee e

Solution of the €XErciSE N3oooiviiiiiiiiiiiie e

Part 4: Pointers and linked lists-Solutions-

Pedagogical ODJECLIVEccvuiieieieiiieieecee e
Solution of the eXerciSe N1ccuevuirieriirieiereeee e
Solution 0f the EXerciSe N2cceecveviieieriieieieee ettt e
Solution of the EXerciSe N°3c.ccivieriirieieii ettt eeees
Solution of the EXerciSe Ncecveviiiieriieiee e
Solution of the EXerciSe N°Scccveviirieriiriieiereeee e

Solution Of the EXErCiSE N6ooiivuiiiiiiiiiieeeeeee e

Bibliography

Q

€

3|Pag

[0}

46
46
46
46
46
47
47
47
47
47
49
49
49
49
49
49
49
50
52
53
53
53
54
57
60
60
60
61
61
63
63
63
64
64
67
67
69
72

Preamble

This document presents tutorials and practical exercises, designed to teach the subject
"Algorithms and Data Structure 2," introduced in the second semester in the Department of
Mathematics and Computer Science at Oum El Bouaghi University, and intended for first-year
computer science students.

First, the pedagogical objectives of this document are:
v Manipulate sub-algorithms (subroutines): procedures & functions;
v" Understand recursive sub-algorithms;
v" Understand the declaration, syntax and semantics of pointers and linked lists;

v Allow the student to acquire the fundamentals of programming.

Indeed, and in order to achieve the aforementioned objectives, we have made tremendous
efforts to approach this work in several aspects; where we have synthesized the most important
and relevant information based on different documentary sources (books, articles, courses,
websites, etc.). While respecting the official canevas determined by the Ministry of Higher

Education and Scientific Research.

Furthermore, this document is divided into two sections: the first presents tutorials and a set
of exercises with their solutions, divided into parts, while the second section provides a set of

practical exercises that enable students to acquire the basics of C programming.

However, the document in question will remain partial and not exhaustive. This is why we
will constantly update it to enrich its content. However, we would be grateful if readers could

notify us of any errors, observations, etc., and also offer us opinions in this regard.

4|Page

Section I

« Tutorials »

Section 1: Tutorials -Exercises-

Part 1 : Records

Pedagogical objectives

- Understand the usefulness of records and manipulate them to solve different problems.

Exercise n°l
Define a TIME type (record) which contains the fields: hour, minute, second.

1. Write an algorithm which allows you to perform the sum T of two durations T1 and T2 of
type TIME.
2. Write an algorithm which allows you to transform a time T of type TIME into an integer S
which expresses this time in seconds. Example: for T = 2 hours 10 minutes 37 seconds,

S = 7837 seconds.

Exercise n°2

A complex number C is defined by its real “a” and imaginary “b” parts (C =a + bi) .
Write an algorithm that reads two complex numbers C1 and C2 and then displays their sum and

product.
Exercise n°3
“Ens” is a record defined by two pieces of information (fields):
- T Pos an array of integers that can contain a maximum of 50 elements;
- N the number of elements of the array T Pos. Given a string Ch, write an algorithm which
allows you to search for the string "ab" and put in a record of type Ens (in the table T Pos) all
the positions of the string “ab” in Ch.
Example: Ch ="' faabaababbaabrs '.
Positions: 3, 6,8, 12=>T Pos [1]=3, T Pos [2]=6, T Pos[3]=8, T Pos [4]=12.

Number of elements: 4 = > N=4.

2|Page

Exercise n°4
A computer is characterized by its serial number, brand, model, and price.
1. Define the structured type Computer.

2. Write an algorithm that stores the information of 20 computers, then displays the

computers whose price is greater than 50.000 DA.

Exercice n°5
A car is characterized by its registration_number, brand, model and price.
1- Define the structured type Car.
2- Write an algorithm allowing you to record information about 20 cars and display the most

expensive one.

3|Page

Part 2: Sub-algorithms

Pedagogical objectives

v Manipulate sub-algorithms (subroutines): procedures & functions;

v" Understand the difference between them;

v Understand the concepts: local variable, global variable, formal parameter, effective

parameter, passing parameters by value and by address.

Exercise n°l1

A procedure is declared as follows:

Procedure P_Test (A, B, C: integer);
Variable S: integer;

Begin

S& A+B+C;

Write (S);

End;

1. Write a main algorithm that calls this procedure.
Specify local and global variables, formal and effective parameters.

Replace the procedure P_Test with a function F_Test.

A

Call this function in the main algorithm.

Exercise n° 2

Consider the following algorithm:

4|Page

5|Pag

Algorithm exo2;
Variables x, y, z, t: integer;
Procedure my procedure (a, b, var c, d: integer)
Begin
c«—a+b;
d<—a*b;
End;
Begin
read (x);
read (y);
my procedure (X, Y, z, t);
write (z2);
write (t);
END

Identify the real (effective) parameters and the formal parameters .

What does this program display assuming the user enters 2 in x and 3 in y ? Modify the

algorithm to obtain a more logical result .

Exercise n°3

Consider the following algorithm:

Algorithm exo3;
Variables T: array [1...100] integer;
i,N :integer ;

Procedure P1 (T: array [1.. N] integer);
Variables 1i, a: integer;
Begin
a<—0;
Fori« 1toNdo
a<—at T [i];
Endfor
Write (a);
End;

Procedure P2 (T: array [1.. N] integer);
Variables 1, b: integer;
Begin
b—1;
Fori < 1toNdo
b«b *T[i] ;
Endfor
Write (b);
End;
Begin
CRepeat

Read(N);
Until (N>=1 and N<100)
For i« 1toNdo
Read (T[i));
Endfor
P1(T);
P2(T);
END

1. Run the algorithm with the following array:

1 |10 |2 |4 |3 |1 |2 |1 [2 |3

2. What is the role of the procedure P1?
3. What is the role of the procedure P2?

4. In the main algorithm, is it possible to do the following calculation:
C1 =a/2 and C2 = b/2? Justify your answer.
5. Replace both procedures with functions. In this case is it possible to calculate Cland C2

in the main algorithm? Justify your answer.

Exercise n°4

1. Write a FindVal sub-algorithm that indicates whether a value is contained in a one-
dimensional array (with the size N). If so, the sub-algorithm must indicate in which cell the
value was found.

2. Write a sub-algorithm which takes as parameters two arrays of real numbers and which
returns the value frue if they are identical, false otherwise.

3. Design local and global variables, formal and effective parameters.

Exercise n°5
A positive integer is perfect if it is equal to the sum of its divisors (except itself). For example
6 is perfect, because 6 = 1+2+3; similarly 28 is perfect, because 28 =1+ 2 +4 + 7 + 14.
1. Write a function Som_Div which calculates the sum of the divisors of n .
2. Write a P_perfect_procedure which uses the Som_Div function and indicates whether n
is perfect or not.
3. Transform this procedure into a Boolean function F_ perfect.
4. Use the previous three sub-algorithms in an algorithm.

5. Design local and global variables, formal and effective parameters as well as sub-algorithms

calls.

5|Page

Exercise n°6

Consider an array T containing the marks of N students (N < 100) in a given module. We
aim to statistically analyze these results using several procedures:

1. Write a procedure Admitted_Students (T, N) that displays all marks greater than or equal
to 10 (admitted students).

2. Write a procedure Non_Admitted_Students (T, N) that displays all marks strictly less than
10 (non-admitted students).

3. Write a procedure Class_Average (T, N) that calculates and displays the overall class
average.

This procedure calls a recursive function named Sum_Grades (T, N) that calculates the sum
of the marks.

4. Write a procedure Highest Mark (T, N) that identifies and displays the highest mark in the
array.

5. Write a procedure Lowest_Mark (T, N) that identifies and displays the lowest mark in the
array.

6. Write the main algorithm that:

v" Fills the Marks array with input or generated values,

v' Calls the above procedures in sequence.

7.1s it possible to calculate the difference between the highest and lowest grade in the main

algorithm? Clearly justify your answer. If your answer is no, make the necessary changes to
ensure this difference can be calculated in the main algorithm.

8. After the initial input of marks for 100 students, some new students enrolled late. This

situation highlights the limitation of using an array structure with a fixed size. What

solution would you propose to allow the dynamic addition of new marks?

Exercise n°7

Consider two vectors V1 and V2 of 20 integers:

1. Write a function “Product (V1, V2: [1..20] array of integer): integer” that allows you to
calculate P: the scalar product of two vectors.

2. Write a procedure “Sum (V1, V2: [1..20] array of integer)” that allows you to calculate S1:
the sum of the elements of the first vector V1 and S2: the sum of the elements of the second
vector V2.

3. Write the main algorithm in which we call the previous sub-algorithms (Product and Sum).

4. In the main algorithm, is it possible to compare between S1 and S2? If your answer is no

give the appropriate solution.
6|Page

NB: The scalar product of two vectors V1 and V2 of dimension # and coordinates such that:
1(1y 2y) et 2(1y 2y)

= 1 2= L= 11t 2t

Exercice n°8
Given an array T(N) of integers:
1. Write a procedure Nbr Positives(T) to:
v Find and display all positive numbers in array T,
v" Calculate and display the sum of these numbers.
2. Write a procedure Nbr Negatives(T) to:
v Find and display all negative numbers in array T,
v" Calculate and display the sum of these numbers.
3. Write the main algorithm

4. In the main algorithm, is it possible to calculate the total sum of the numbers (positive and

negative) in the array? Justify your answer.

5. If your answer is No, make the necessary modifications to ensure that the total sum can be

calculated in the main algorithm.

7|Page

Part 3: Recursive sub-algorithms

Pedagogical objectives

Manipulate recursive sub-algorithms.

Exercise n°l

Run the following recursive function (for n = 8, x = 5) and deduce what it is doing.

Function Product (n: integer, x: integer): integer;
Begin
If (n > 0) then
Write ("before call n=",n, ", x=", x);
Product <- Product (n-1, x) + x;
Write (" after call n=", n, "x=", x);
Else
Product<-0
Endif
End;

Begin /* main algorithm®/

n=_8,x=25;
Write (n, '*', x, '=" ,Product (n, x));
END

Exercise n°2

a. Write an iterative function that returns the quotient of the Euclidean division of an integer
a by an integer b using successive subtraction.

b. Give the corresponding recursive function.

8|Page

9|Page

Exercise n°3

Write an algorithm that uses a recursive sub-algorithm to calculate the greatest common divisor

(GCD) of two strictly positive integer values using the Euclid method.

Exercise n°4

1. Write a recursive function Sum_Tab, allowing you to calculate the sum of the elements of

an array of integers.

2. Write a recursive procedure Inverse Tab , allowing you to reverse the elements of an

array of integers.

3. Write an algorithm that uses the Sum-Tab and Inverse Tab sub-algorithms.

Exercise n°5
Write a recursive function to calculate Xn. (X integer).
2. Write a recursive function to calculate X !. (X integer).
3. Use these two functions in the main algorithm to calculate the following sum:

S=(Xn+1— (1)) +Xnt+2 = (2)) + (Xn+3=3) D+ vvevvrenn, + (Xn+m — (m) !)

Part 4: Pointers and linked lists

Pedagogical objective

v Understand the declaration, syntax and semantics of pointers, among others: indirect
addressing, the content of a dynamic variable as well as arrays using pointers;

v" Understand dynamic memory allocation and freeing.
v Manipulate linked lists using different operations.

Exercise n°1

Let three integers A, B, C and two pointers of integer type P1 and P2.

A B C ‘ Pl ‘ ‘PZ ‘
@: @: ' ' ' '
0xf0 0xf8

@

: @: @:
0xf4 0xfA 0xfC

Determine the values of the different elements given in the table for each operation.

A B C| &A | &B | &C P1 P2 *P1 *P2
A—1,B-2,C-3
P1—&A,P2—&B
P2=&C
*P1 =*P2
(*P2)++
P1=P2
P2=&B
*P2 =*P1 - 2* *P2
(*P2)—
C=P2=&0)
*P2=*P1 + A

10| Page

Exercise n°2
Let a pointer P, which points to an array A:
int A[= {12, 23, 34, 45, 56, 67,78, 89,90}, int *P; P =A;

What values or addresses do the following expressions provide?

a) *P+2

b) *(P+2)
c) &P+l

d) &A[4]-3
e) A+3

) &A[7]-P

g) P+(*P-10)
h) *(P+*(P+8)-A[7])

Exercise n°3
Write an algorithm that allows you to:
- Declare pointers to: an integer, a real number, a character, a “Student” record
composed of the following fields: Registration number, Last name, First
name and Result ;
- Then Read() data that corresponds to the variables pointed to by these pointers.
Exercise n°4
Write an algorithm that arranges the elements of an array of N integers in reverse
order. Using two pointers P1 and P2 and a numeric variable HELP (intermediate

variable) to swap the array elements.

Exercise n°5
An employer is defined by the following information: last name, first name, date
of birth, number of children and qualification. We want to establish a list of all
employers, knowing that we do not know their number beforehand, however, they
will not exceed 300 (<=300).
1. Propose a data structure (records) to be used to manage employers.
2. Write an algorithm to enter all the information.
3. Write an algorithm to sort employers according to increasing order of their

ages and only keep in memory 10% of the youngest employers.

Exercise n°6
Consider an array T of integers with a maximum size of 100.

11|Page

Using only pointers (without any variable of integer type), write an algorithm that:

1. Reads the elements of the array.
2. Displays the indices of the elements that are multiples of 3 (divisible by 3).

3. Calculates and displays the product of these elements.

Exercice n°7
We have T an array of integers with a maximum size of 100. Using the pointers, write an

algorithm, which allows you to:

1. Read the array;
2. Print the indexes of the odd elements and calculate their sum.

NB. Without using any integer variables just the pointers.
Exercice n°8

We want to build a list of elements defined by real-type data, without knowing their number in

advance.

Using the singly linked list data structure, write an algorithm that allows:
a) Creating the list of elements.

b) Displaying the list of elements.

¢) Inserting an element at the K-th position in the list.

d) Deleting a given element from the list.

12|Page

Section 1: Tutorials -Solutions-

Part 1: Records - Solutions-

Pedagogical objectives

- Understand the usefulness of custom types and manipulate them to solve different problems.

Solution of the exercise n°l

Type TIME= Record

Hour, Minute, Sec: integer;
EndRecord
Algorithm Sum_Time ;
Variables X: integer;

T, T1, T2: TIME;

Begin
Write (““ Enter the T1 and T2 durations in hours, minutes and seconds)
Read (T1.Hour);
Read (T1.Minute);
Read (T1.Sec);
Read (T2.Hour);
Read (T2 .Minute);
Read (T2.Sec);

13|Page

X«T1.Sect+ T2.Sec;

T.Sec—X mod 60;

T.Minute < X div 60;

X«T.Minute+T1.Minute+ T2.Minute;

T.Minute «— X mod 60;

T.Hour « X div 60+ T1.Hour+ T2.Hour;

Write (" The result of the sum of two durations T1 and T2 is ", T.Hour , " Hour ", T.Minute , "
Minute ", T.Sec , “ Second ”);

END

Algorithm Transformation;
Variables T: TIME;
R: integer;
Begin
Write (““ Enter the duration T in hours, minutes and seconds ™)
Read (T.Hour);
Read (T.Minute);
Read (T.Sec);
R«T.Sec +(60* T.Minute)+(3600* T.Hour);
Write (“ The duration in seconds is ”’, R);

END

Solution of the exercise n°2

Type Complex = Record

Preel : real;
Pimag : real;
EndRecord

Algorithm Complex Calculation ;

Variables S, P, C1, C2: Complex;

Begin

Write ("Give the real part of the 1st complex number C1: ");

Read (C1 .Preel);

Write ("Give the imaginary part of the 1st complex number C1: ");
Read (C1.Pimag);

14|Page

Write ("Give the real part of the 2nd complex number C2: ") ;
Read (C2.Preel);

Write ("Give the imaginary part of the 2nd complex number C2: ") ;
Read (C2.Pimag);

S.Preel < C1.Preel + C2.Preel;

S.Pimag < C1.Pimag + C2.Pimag;

Write ("Sum =", S.Preel , "+ ", S.Pimag, " 1"

P.Preel < (C1.Preel * C2.Preel)- (C1.Pimag * C2.Pimag);
P.Pimag « (C1.Preel * C2.Pimag)+ (C1.Pimag * C2.Preel);
Write ("Product =", P.Preel , "+", P.Pimag , "i");

END

Solution to the exercise n°3

Type Ens = Record
T Pos:array [1..50] integer;
N: integer;

EndRecord

Algorithm Pos_ab ;
Variables 1, j, k, T :integer ;
Ch: string;
Pos: Ens;
Begin
Write ("Enter a string");
Read (Ch);
T« Length (Ch);
1—1;
je1;
Pos.N«—O0 ;
While (i<T) do
If (Ch [i]='a' and Ch [i+1]='b") then
Pos. T Pos [j] «i;
Pos.N«—Pos.N+1 ;

15|Page

jeitls
1—i+2 ;
Else
1—it+1
End if
Endwhile
Write ("The positions of the string 'ab' in ", Ch , "are");
Fork—1tojdo
Write (Pos. T Pos [k]);
Endfor
Write (“The number of elements is”, Pos.N);

END

Solution of the exercise n°4

Algorithm Exercise 4 ;
Type Computer=Record
serial_number: integer;
brand: string(20); model:
string(20); price: real;
EndRecord
Var:
C : array [1..20] of Computer; i :
integer;
Begin
Write (“Enter the information about the Computers”);
For 1<ito20do
Read (C[i]. serial number); Read
(C[i]. brand);
Read (C[i]. model);
Read (C[1]. price);
Endfor

16| Page

For i1 to 20 do
If (C[i].price > 50000) then
Write (C[i].serial number, C[i].brand, C[i].model, C[i].price);
endif
Endfor

END

Solution of the exercise n°4

Algorithm car ;
Type Car=Record
registration_number: integer;
brand: string(20);
model: string(20);
price: real;
EndRecord
Variables
C : array [1..20] of Car;
i, pr, ind: integer;
Begin
Write (“Enter the information about the cars™);
For 1«<ito20do
Read (C[1]. registration_number);
Read (C[i]. brand);
Read (C[i]. model);
Read (C[i]. price);
Endfor
pr— C[1].price ; ind« 1 ;

For 2<ito 20 do
If (C[i].price>pr) then
pr < CJ[i].price ;
ind«— i;
endif
Endfor
Write (“The most expensive car is the”, ind, “car”);
END

17| Page

Part 2: Sub-algorithms — Solutions-

Pedagogical objectives

v' Manipulate sub-algorithms (subroutines): procedures & functions;

v' Understand the difference between them;

4 Understand the concepts: local variable, global variable, formal parameter, effective parameter,

passing parameters by value and by address.

Solution of the exercise n°l

v" Questions 1 and 2

Algﬂmhm_em—" ; Global variables
Variables X ,Y,Z : integer;

P Test Procedur*: (A, B, C: integer); | Formal parameters
Variable S: integer; v\

Begin Local variable
SEA+B+C

Write (S);

End;

Begin

Read (X,Y,Z); Effective parameters
P_Test(X,Y,Z); L

END.

18| Page

v Questions 3 and 4

Algorithm exol;

Variables X ,Y,Z, R : integer;
Function F Test (A, B, C: integer): integer;
Var S: integer;

Begin

S< A+B+C.

F Test<S;End;

Begin

Read (X,Y,Z);

R& F Test(X,Y, Z);Write
(R);

END.

Solution of the exercise n°2

e The effective parameters are those of the calling program (of the main algorithm): x, y, z, ¢

e The formal parameters are those of the sub-algorithm (the procedure) and make it possible
to recover the value of the real parameters: a, b, ¢, d

v’ What does this program display assuming the user enters 2 inx and 3 iny ?

Algorithm exo2;
Procedure ma procedure (a, b, var c, d: integer)
Begin
c—a+b;
d<«—axb;
End;

Variables x,y, z, t:integer; - __ __ _ Ty |
Begin 2,03 fb=213=5
read (o; = |pd :
read(y),
my_procedure (X,y,z, t); =~ """ " 7] e ETE

A
2131 | Axb=2x3=6

write (2); — [z Tt
write (t); 5
END

After the call to my _procedure , z =15 and t is worth nothing specific. Indeed, c is a parameter
passed by variable, so the modifications made to ¢ in the sub-algorithm are reflected in the

corresponding effective parameter z. On the other hand, d being a parameter passed by value,

19|Page

the corresponding effective parameter ¢ is not affected by the changes. ¢ therefore retains its
value before the call to the sub-algorithm.

v Modify the code to obtain a more logical result.

By “transforming” d into a parameter by variable (address), in this case my procedure takes

two integers as input and returns via c the sum of these two integers and via d their product.

Algorithm exo2;
Procedure my_ procedure (a, b, var ¢, VA d: integer)
Begin
c—a+b;
d<axb;
End;
Val'.iables X, Y, 7, t: integer ;- - - - - _ _ — |
E %2 ¥ a+b=243=5 [axb=2x3=6
rad () T
read (y); - /
my_procedure &7 A e
wite (2 ————pz 217 /NA
write (t); J :()
END

Solution of the exercise n° 3

1. Run the algorithm with the following array:

(Lo J2 J4 |3 [t]2 Jr]2 |3 |

The algorithm displays:

19
0

2. What is the role of the procedure P1?
It calculates the sum of the elements of an array.
3. What is the role of the procedure P2?
It calculates the product of the elements of an array.
4. In the main algorithm, is it possible to calculate C1=a/2 and C2 = b/2?
No, we cannot.
Justify your answer
The variables “a”, declared to calculate the sum, and “ b”, declared to calculate the product,
are local variables. In fact, they cannot be used in the main algorithm because the space of

these local variables is freed at the end of the execution of the procedures.

20|Page

5. Replace both procedures with functions.

Algorithm exo3;
Variables T : array [1..100] integer;
N,S,P, i:integer;

Function F1 (T: array [1.. N] integer): integer ;
Variables i, a: integer;
Begin

a<-0;
Fori < 1toNdo

a—atTJi];

End for

Flea;
End;
Function F2 (T: array [1.. N] integer): integer ;
Variables i, b: integer;
Begin
b1;
For i« Ito N do

b«b *T[i];
Endfor
F2«b;

End;
Begin
Repeat

Read(N);
Until (N>=1 and N<100)
Fori« 1to N do

Read (T[i]);

Endfor

S< F1(T); Write (S);

P <F2(T); Write (P);
END

In this case, is it possible to calculate Cland C2 in the main algorithm?
Yes. The use of functions makes it possible to recover the result of the sum “a” in the global

variable S and the result of the product “b” in the global variable P ;

21|Page

Solution of the exercise n°4

Algorithm exo4;
Variables T: array [1..20] real;
val: real;
case: integer;
b: boolean;
Procedure FindVal (N: Integer,T: array[1
Variables i: integer;
Begin
found « false;
rg<—0;
1<—1;
Repeat
If (T[i] = val) then
found « true;
rg i,
else
|ie—i+1;
endif
Until (found = true OR i > N)
End;
Begin
// We assume that T is already filled
Read (val);
FindVal (20, T, val, case, b);
If (b = true) then

Else

Write (“Value not found”);
Endif
END

.. N]real,val: real; Var rg : integer, found: boolean);

Write (“The value”, val, “was detected at the position”, case);

2.

Algorithm exo4;

Variables A1, A2: array [1.. 20] real;
M1, M2: integer;
b: boolean;

Variables i: integer;
identical: boolean;

Begin

Function Compare (N1, N2: integer, T1: array [1..N1] real, T2: array [1..N2] real): boolean;

22|Page

If (N1 # N2) then
identical = false; // if the arrays are different sizes, they are not identical.
else
1<—1;
identical « true;
Repeat
If (T1[1] # T2[i])Then
identical < false;
else
1<—1+1;
Endif
Until (identical = false OR i > N1)
Compare « identical;
Endif
END
Begin
Read (M1, M2); // M1 and M2 <= 20 We assume that A1 and A2 are already filled
b= Compare (M1, M2, Al, A2);
If (b = true) then
Write (“the two tables are identical”);
else
Write (“the two tables are not identical”) ;
Endif
END

Solution of the exercise n° 5
1.

Function Som_Div (n: integer): integer;
Variable i, sum: integer;
Begin
sum €0 ;
Fori €1 to (ndiv2)do
If (n mod 1 = 0) then
sum € sum+i ;
Endif
EndFor
Som_Div& sum;
End;

2.

Procedure P_Perfect (n: integer);
Variable S: integer;

Begin
S< Som_Div (n);

23| Page

If (S =n) then
Write (“the number”, n, “ is perfect”);
Else

Write (“the number”, n, “is not perfect”);
Endif
End;

3.

Function F_Perfect (n: integer): boolean;
Variable S: integer;
Begin
S=Som_Div (n);
If (S = n) then
F_Perfect <true;
Else
F_Perfect <false;
Endif
End;

4. Main algorithm:

Algorithm Perfect;
Variables Bool : boolean, n: integer;
//Declaration and definition of subroutines 1, 2, 3.
Function Som_Div (n: integer): integer;
Variable i, sum: integer;
Begin
sum €0 ;
Fori <1 to (ndiv2) do
If (n mod 1= 0) then
sum € sum+i ;
Endif
EndFor

Som_Div&< sum;
End;
Procedure P_Perfect (n: integer);

Variable S: integer;

Begin

S< Som_Div (n);

If (S = n) then

Write (“the number”, n, “ is perfect”);
Else

Write (“the number”, n, “is not perfect”);
Endif
End;
Function F_Perfect (n: integer): boolean;

24|Page

Variable S: integer;
Begin
S=Som_Div (n); If
(S =n) then
F Perfect <true;
Else
F_Perfect <false;
Endif
End;

Begin
Write ("Enter a number"); Read (n);
/I Procedure call
P_Perfect (n); // here, “n” is an effective parameter.
/I Function call
Bool € F_Perfect (n); // here, “n” is an effective
parameter. If (Bool = true) then
Write (“the number”, n, ““ is perfect”);
Else
Write (“the number”, n, “is not perfect”);
End if
END

Solution of the exercise n°6

1. Procedure Admitted_Students (T:[1..100] array of integer, N: integer)

Variables i: integer;
Begin
For i«1toNdo
If T[] >= 10 then
Write (“Student”, 1, “is admitted”);
End If
End for
End;

2. Procedure Non_Admitted Students (T: [1..100] array of integer, N: integer)
Var i: integer;
Begin
For i«1toNdo
If T[1] <10 then
Write (“Student”, i, *“is not admitted”); End If End for
End ;

25|Page

3. Function Sum_Grades (T: [1..100] array of integer, N: integer): integer
Begin
If N =0 then Sum_Grades < 0;
Else Sum Grades <— T[N]+ Sum_Grades (T, N-1); End if;
End;

Procedure Class_Average (T:[1..100] array of integer, N: integer)

Variables S, M: integer;
Begin
S « Sum_Grades (T, N);

M < S/N;
Write (“ Class_Average is: 7, M);
End;

4. Procedure Highest _Grade (T: [1..100] array of integer, N: integer)
Var: i, max: integer;
Begin
max «— T[1];
For i<2to N do

If T[i] >= max then Max « T[i];
Endif Endfor

Write (“The Highest Grade is: , max); End;

5. Procedure Lowest Grade (T: [1..100] array of integer, N: integer)
Var: i, min: integer;
Begin
min «— T[1];
For 1«2 to N do
If T[1] <= min then
min «— T[i];
Endif Endfor
Write (“The Lowest Grade is: , max);

End;

26|Page

6. Algorithm Exercise_6;

Var: T: array [1..100] of integer; N, 1 integer;

\Copy the previous procedures into this section\

Begin
Repeat
Write (“Enter the real dimension of the vectors”); Read(N);
Until (N>=1 and N<=100)
Write (“Enter the elements of the vector T”);
For 1—itoNdo
Read (T[i]);
Endfor;
Admitted Students(T, N);
Non_Admitted_Students(T, N);
Class_Average(T, N);
Highest_Grade(T, N);
Lowest Grade(T, N);
END.

7. No, we can’t;

Justification: The variables “max and min”, declared to identify the Highest Grade and the Lowest
Grade, are local variables . Indeed, they cannot be used in the main algorithm to compare between
max and min because the space of these local variables is freed when the execution of the procedure
is finished.

Solution: there are three possible solutions

a. Use max and min as parameters and pass them by variable (var max, min).

b. Declare max and min as global variables.

c¢. Convert the two procedures: Highest Grade and the Lowest Grade into functions

8. This case requires the use of linked lists

27| Page

Solution of the exercise n°7

1.
Function Product (V1, V2: [1..20] array of integer): integer
Variable P : integer ;
Begin
P—0;
For i—1toNdo
P — P +(VI[i] * V2[i]);
Endfor
Product — P ;
End ;
2.
Procedure Sum (V1, V2: [1..20] array of integer)
Variables S1, S2: integer;
Begin
S1=0; S2=0;
For i—1toNdo
S1« S1+V1 [i];
S2 «— S2 +V2 [i];
Endfor
Write (“the sum of the elements of the vector V1 is”,S1);
Write (“the sum of the elements of the vector V2 is”,S2);
End;

3. Algorithm exercise 7;
Function Product (V1, V2: [1..20] array of integer): integer
Variable P : integer ;
Begin
P—0;
For i—1toNdo
P«—P+VI [i] * V2 [i];
Endfor
Product — P ;

End;
25|Page

Procedure Sum (V1, V2: [1..20] array of integer);

Variables S1, S2: integer;
Begin
S1=0; S2=0;
For i—1toNdo
S1 « S1+V1 [i];
S2 «— S2 +V2 [i];
Endfor
Write (“the sum of the elements of the vector V1 is”,S1);
Write (“the sum of the elements of the vector V2 is”,S2);
End;
Variables V1: array [1..20] of integer; V2: array [1..20] of integer; prod, N, 1 integer;

Begin
Repeat
Write (“Enter the real dimension of the vectors™);
Read(N);
Until (N>=1 & N<=20)
Write (“Enter the elements of the first vector V17’);
For 1—itoNdo
Read (V1[i));
Endfor
Write (“Enter the elements of the second vector V”);
For 1—itoNdo
Read (V2[i));
Endfor
prod <— Product (V1, V2);
Write (“Scalar product of the two vectors V1 and V2 is”, prod);
Sum (V1, V2);
END

26|Page

4. No, we can’t;
Justification: The variables “S1 & S2”, declared to calculate the sum of the elements of the array, are
local variables . Indeed, they cannot be used in the main algorithm to compare between S1 and S2
because the space of these local variables is freed when the execution of the procedure is finished.
Solution: there are three possible solutions
a) Use S1 and S2 as parameters and pass them by variable (var S1, S2).
b) Declare S1 and S2 as global variables.

c) Use two different function the first one to calculate S1 and the second to calculate S2.

27| Page

Part 3: Recursive sub-algorithms — Solutions-

Pedagogical objectives

Manipulate recursive sub-algorithms.

Solution of the exercise n°l

1% - call (8.5);

before call n=8, x=5
before call n=7, x=5
before call n=6, x=5
before call n=5, x=5
before call n=4, x=5
before call n=3, x=5
before call n=2, x=5

before call n=1, x=5

In the main algorithm

8*5=40

The sub algorithm makes the product of n*x. The instruction ("' after call n=", n, "x=", x); in

the product function is never executed.

Solution of the exercise n°2
a) Iterative function
Function quotient division (a ,b :integer):integer;
Begin
Variable S: integer; S < 0;
While (a>=b) do

aé& a-b;
S« S+ 1;
Endwhile

quotient _division €< S ; End

28| Page

b) Recursive function
Function quotient _ division_rec (a ,b :integer):integer;
Begin
If (a<b) then
quotient_division_rec <0;
Else
quotient division rec € quotient division rec (a- b,b)+1;
Endif
End;

Solution of the exercise n°3

Algorithm Calculation ;
Variables X,Y, P : integer ;
Function GCD (a, b : integer) : integer ;
Begin
If (a=Db) then // Particular case = Stopping criterion.
GCD € a

Else

If (a>b) then // General case

GCD <« GCD (a-b, b);
else // General case

GCD <« GCD (a, b-a);
Endif

Endif
End;
Begin
Read (X ,Y);
If (Y<0) Or (X <0) then
Write (“Numbers are not strictly positive”);
Else
P < GCD (X, Y);
Write (“THE PGCD of”, X, Y, * =, P);
Endif
END

29| Page

Solution of the exercise n°4
Type Tab = array [1..50] integer ;

a. Recursive function to calculate the sum of the elements of an array

Function Sum_tab (var T: Tab, n: integer) : integer ;
/* n is the number of elements in the array
Begin
If (n=1) then
Sum_tab € T[1];
else
Sum_tab € T[n] + Sum_tab (T, n-1);
Endif
End;

b. Recursive procedure to reverse the elements of an array

Procedure inverse tab (var T:tab; d, f: integer);
Variable x: integer;
Begin

If (d<f) then
x < td];

t[d 1< t[f];

t[f]€x;

inverse tab (T,d +1,f-1); // Recursive call
Endif
End;

Note
v' d: start of the table to be reversed.

v" {: end of the table to be reversed

30|Page

Part 4: Pointers and linked lists — Solutions-

Pedagogical objective

v Understand the declaration, syntax and semantics of pointers, among others: indirect
addressing, the content of a dynamic variable as well as arrays using pointers;

v" Understand dynamic memory allocation and freeing.

Solution of the exercise n°l

1 G B I N il

0xf0 0xf4 0xf8 OxfA 0xfC

A B| C &A &B &C P1 P2 *P1| *P2
A—1,B—2,C-3
P1—&A,P2—&B 1] 2 3 0xf0 0xf4 0xf8 0xf0 0xf4 1 2
P2=&C 1 2 3 0xf0 0xf4 0xf8 0x1f0 0xf8 1 3
*P1 =*P2 3 2 3 0xf0 0xf4 0xf8 0xf0 0xf¥ 3 3
(*P2)++ 3| 2 4 0xf0 0xf4 0xf8 0xf0 0xf8 3 4
P1=P2 3 2 4 0xf0 0xf4 0xf8 0xf8 0xf¥ 4 4
P2=&B 3 2 4 0xf0 0xf4 0x1f8 0xf8 0xf4 4 2
P2=*P1-2%P2 | 3| 41 Oxf0 | oOxf4 | Oxf8 | Oxf8 | Oxf4 4 0
(*P2)-- 30 -1 4 0xf0 0xf4 0xf8 0xf8 0xf4 4 -1
C=P2=&0) 3| -1 0 0xf0 0xf4 0xf8 0xf8 0xf4 0 -1
*P2=*P1+ A 31 3 0 0xf0 0xf4 0x1f8 0x18 0xf4 0 3

31|Page

Solution of the exercise n°2
int A[|= {12, 23, 34, 45, 56, 67, 78, 89, 90}; int *P; P = A;
a) *P+2 => the value 14
b) *(P+2) => the value 34
c) &P+1 => the address of the pointer behind the pointer P (rarely used)
d) &A[4]-3 => the address of element A[1]
e) A+3 => the address of element A[3]
f) &A[7]-P => the value (index) 7
g) P+(*P-10) => the address of element A[2]
h) *(P+*(P+8)-A[7]) => the value 23
Solution of the exercise n°3
Algorithm Exercisel ;
Type Student = Record
N_Registration: integer;
Last name: string (20); First_name: string (20);
Res: real;
EndRecord
Variables pi: * int; // pointer to an integer.
pr:*real; // pointer to real.
pc: * character; // pointer to character.
pe: * Student; // pointer to a student record.
1: int; r: real; ¢: character; e: Student;
Begin
pi «—&i ; pr«— &r; pc «— &c ;pe «— &e ;
Write ("enter an integer"); Read (*pi);
Write ("enter a real"); Read (*pr);
Write ("enter a character"); Read (*pc);
Write ("enter student’s information :");
Write (“enter the registration number”); Read ((*pe). N_Registration);
Write ("enter the name"); Read ((*pe). Last name);
Write ("enter the first name"); Read ((*pe). First name);
Write ("enter the result"); Read ((*pe).Res);
End

32|Page

Solution of the exercise n°4

Algorithm invert Array;
Variables tab = Array [1..50] integer;
N, HELP: integer;

P1: * integer; P2: *integer; /*helper pointers*/
Begin

/* Data entry */
Repeat

Write ("enter the dimension of the array: ");

Read (N);

Until (N>=1) and (N<=50);

For (P1=tab) to (tab+N) do

// Equivalent to (For i=1 to N do)

// Just to show indirect (pointer) addressing manipulation
Read (*P1);

/I we did not use the address operator &, however, we used the pointer P1 which contains

an address to tab[i]; (indirect addressing)

EndFor

// Display the array

For (P1=tab) o (tab+N) do

Write (*P1);
EndFor

//Reverse array elements
P1 < tab; P2 « tab+N;
While (P1<P2) do
HELP « *P1 ;
*P1l «— *P2;
*P2 «— HELP;
Pl « P1+1;
P2 « P2-1;

EndWhile
// Display result

33|Page

34|Page

For (P1=tab) to (tab+N) Do
Write (*P1);

EndFor

END

Solution of the exercise n°5

1. Data structures

Type Date=Record
dd: integer;
mm: integer;
aa: integer;
EndRecord
Type Employer= Record
Last name: string(20);
First name: string (20);
Date B: Date;
Nb_E: integer;
Qualif: string (30);
EndRecord
Employer list=Array [1...300] of * Employer;
2. Algorithm to enter data
Algorithm Employers;
Type Date=Record
dd: integer;
mm: integer;
aa: integer;
EndRecord
Type Employer= Record
Last name: string(20);
First name: string (20);
Date B: Date;
Nb_E: integer;
Qualif: string (30);

EndRecord
Employer list=Array [1..300] of *Employer; //Array of pointers to employers.
Variables i: integer, Bool: boolean; Char: character; L: Employer _list;
Begin
1< 1 ;Bool « true;
While (Bool = true) and (i<=300) do
Allocate (L[1));
// L[1] is a pointer to an employer, it is the memory allocation of a dynamic employer type
variable whose pointeris L[1].
Write (“'Employer n°", 1);
Write ("Give the last name: ");
Read ((*L[1]).Last_name);
Write ("Give the first name: ");
Read ((*L[1]).First_name);
Write ("Give the date of birth: ");
Write ("Give the day: "); Read ((*L[i]). Date B.dd);
Write ("Give the month: ");Read ((*L[1]).Date_B.mm);
Write ("Give the year: "); Read ((*L[1]). Date B.yy);
Write ("Give the number of children: "); Read ((*L[i]).Nb_E);
Write ("Give the qualification: "); Read ((*L[1]).Qualif);
Repeat
Write (“are there other employers Y/yes/N/no?”);
Read (Char);
Until (Char = °Y’) or (Char = ‘N’)
If (Char ="Y") then
1 1+1;
else
Bool « false;
Endwhile
END.

35|Page

3. Algorithm for sorting employers

Algorithm Sort Employers;

Employer list=Array [1..300] of *Employer; //Array of pointers to employers.
Variables N, Pc: integer;

/" N number of employers entered in the previous algorithm =i

L: Employer _list; P1, P2: *Employer; Aux: Employer;
Begin

For (P1=L) to (L+N-1) do
For (P2=P1+ 1) to (L+N) do
If ((*P1). Date_B .yy) <((*P2). Date B .yy) then
Aux < (*P1); (*P1)
— (*P2);

(*P2) «— Aux ;
else

If ((*P1).Date_B .yy)= ((*P2).Date B .yy) then
If (*P1). Date B .mm) < ((*P2). Date B .mm) then
Aux «— (*P1);
(*P1) (*P2);

(*P2) < Aux ;
else

If (*P1). Date B .mm)= ((*P2). Date_ B .mm) then
If ((*P1). Date B .dd) < ((*P2). Date B .dd) then

Aux «— (*P1);
(*P1) — (*P2);
(*P2) « Aux ;
Endif
End if
Endif
End if
End if
EndFor

EndFor

// Number of employers selected

36|Page

Pc < (N DIV 10); P1 <« L;
For (P1 =L+Pc) to (L+N) Do
Free (Pl) ;

EndFor

End

Solution of the exercise n°6

Algorithm Exercise 2 ;
Variables T : array [1..100] integer ; P, P1:*integer ;
Begin

For P=T to (T+100) do (1.5 pt)
Read (*P);

Endfor

Allocate (P1); (1 pt)

*Ple—1;

For P=T to (T+100) do

If (*P) mod 3 = 0) then (2 pts)
Write("The index is”,P-T);
*Pl—*P1 * *P;

End If

Endfor

End

37|Page

Solution of the exercise n°7

Algorithm Find indexes odd ;
Variables T : array [1..100] integer ; P, P1:*integer ;
Begin
For P=T to (T+100) do
Read (*P);
Endfor
Allocate (P1);
*P10;
For P=T to (T+50) do
If ((*P) mod 2 != 0) then
Write("index of the odd number is”,P-T);
*Pl—*P1+*P;
Endif
End

Solution of the exercise n°8
Type Element = Record
Info: real;
Next: *Element;

End;

Type List: *Element;
End;

// Declarations

Variables head, P, L: List;
flag: boolean;
add_element: char;
k, i: integer;

val: real;

38| Page

Begin

// Create the llSt sk sk sk sk sfe sk sk sk sk sfe sk sk sk sk sk sk sfe skeosk sk skeokesk skosk

head < Nil;

flag « true;

While (flag = true) do
Allocate (P); // allocate memory space
Write ("Enter the value of the element");
Read ((*P).Info);
(*P).Next « head,
head < P;

// Confirm whether to add another element
Write ("Are there more elements? Y/N");
Read (add_element);
If (add_element = "N") Then
flag < false;
EndIf
EndWhile

// Dlsplay 11St elements 3t 3t st sk s sk sk sk sk sk sk st sk sk sk sk sk sk sk sk ste sk sk sk sk sk sk sk sk sk ste sk sk sk sk sk sk ki ke sk skoskoskoskoskok

P < head; // point to the first element

While (P # Nil) do // traverse from first to last element
Write ((*P).Info); // display the element
P < (*P).Next; // move to next

EndWhile

// Insert an element at the K-th position stttk ok
Write ("Enter the position");

Read (k);

Write ("Enter the value to insert");

Read (val);

39|Page

L < head;

If (k =0) Then // insertion at the head
Allocate (P);
(*P).Info « val;
(*P).Next « head;
head < P;
Else
1< 0;
While (i <k) and (L # Nil) do
L « (*L).Next;
1—1+1;

EndWhile

If (1 = k) and (L # Nil) Then
Allocate (P);
(*P).Info « val;
(*P).Next «— (*L).Next;
(*L).Next < P;

Else
Write ("Position does not exist");

EndIf

EndIf

// Delete a given element from the list *### stttk itk kot
If (head # Nil) then
If ((*head).Info = val) then // delete first element
P < head;
head < (*P).Next;
Free (P); // free memory
Else
flag « false;
Prev < head;

P « (*head).Next;

40|Page

While (P # Nil) and (flag = false) do
If ((*P).Info = val) Then
flag « true;
Else
Prev <« P;
P < (*P).Next;
EndIf
EndWhile

If (flag = true) Then
(*Prev).Next « (*P).Next;
Free (P);
Else
Write ("Value does not exist");
EndIf
EndIf
Else
Write ("The list is empty");
EndIf
End

41|Page

Section 2: Practical work -Exercises-

Part 1 : Records

Pedagogical objectives

v Handle custom types in C language, in terms of declaration and processing.

Exercise n°l
Write a C program that defines three structures Point (fields: X and Y), Circle (Fields: X, Y,
R) and Rectangle (Log, Lag). The program must read and display the respective fields of the

Point, Circle and Rectangle structure type variables (point p1, circles cl, rectangles R1).
Exercise n°2

An industrial carpentry manages a stock of wooden panels. Each panel has a width, length
and thickness in millimeters, as well as the type of wood which can be pine (code 0), oak

(code 1) or beech (code 2).

. Define a panel record containing all the information relating to a wooden panel,;

. Write a C program that allows you to

enter and display a wood panel (numeric entry for the type of wood (eg: 0), display in
characters of the type of wood (eg: pine);

Calculate the volume of a panel ((thickness*width*length)/10).

39|Page

Exercise n°3

Consider the following structures (records):

- Date defined by the three fields: day, month and year;
- Address defined by the fields: Number, Street, Municipality, Wilaya, Postal Code;
- Employee defined by the fields: LastName, FirstName, Residence, DateBirth

Write a C program that allows you to enter employee information from the keyboard and check:

— whether an employee was born before a given year;

— if an employee resides in a given wilaya.

40|Page

Part 2: Sub-algorithms

Pedagogical objectives

v Handle procedures & functions in C;

Exercise n°l

Write function int power(int x, int y) which takes two integer parameters and and
returns . Also give an example of calling this function by writing a main function in
which you display the calculation result.

Same question, but this time we want to pass the result by variable. The function header
therefore becomes void power(int x, int y, int *r).

Write a division function that performs integer division and returns both the quotient and

remainder by variable, and the main function that calls it.

Exercise n°2

41|Page

Write a function grab that allows you to grab an array of integers.

Write a function display that displays the elements of the array.

Write a function calculate_average, which allows you to calculate the average of the
elements of an array.

Write a function find_min_max, which allows you to find the minimum and maximum
between the elements of an array.

Write the main program.

Exercise n°3

F is a numerical function defined by F(X) = X ?-2X+1 . We want to construct an
array of values of this function. The user enters the number N of values as well
as the values of X. Write a program that matches this processing.

Example:

Enter an integer between 1 and 100: 9

Enter 9 real numbers: |-4 |-3|-2|-1]0|1|2|3 4]

X |-4.0 |-3.0 |-2.0|-1.0]0.0]1.0]2.0]3.0 |4.0 |

F(X) |-55.0-20.0/-3.0/2.0 [1.0]0.0 |5.0]22.0] 57.0|

NB : the solution must include subprograms.

42|Page

Part 3 : Recursive sub-algorithms

Pedagogical objectives

v Handle recursive procedures & functions in C;

Exercise n°l

e Write in C a recursive function allowing you to calculate X" for X real and n natural
integer.

e Write a recursive function in C to calculate X! for integer X.

Exercise n°2
We consider the mathematical Ackermann function F of two real variables x and y, defined

as follows:

F(x,y) =y+1 if x=0 ;

Fx,y)=F(x-1,1)ifx>0andy=0;

F(x,y) = F(x-1, F(x, y-1)) if x And y are different of 0.
Write a recursive program in C which requests the two values x and y and displays the value of
F(x,y).

Exercise n°3

We consider the mathematical Fibonacci function F defined as follows:
— F0)=0;,F() =1
— Fm)=Fm—1)+F {n-2) Forn>1

Write a recursive program in C that asks for an integer value n and displays the value of F(n).

Part 4: Pointers and linked lists
43|Page

Pedagogical objective
v’ Manipulate pointers in C, pointer arithmetic and addressing the elements of an array;

v" Apply the “malloc” and “free” functions for dynamic memory allocation and release.

Exercise n°1
Write a C program that uses the notion of pointer to read two integers and calculate their sum.

Exercise n°2

sizeof (T type) function returns the number of bytes necessary to encode, in memory, a
dynamic variable of type T.

1. Using this function, write a program that determines the number of bytes occupied by:
— A character.

— An integer (short and long).

— A boolean;

— A real.

— The string “1234567.

2. What do you notice about the size of the string?

Exercise n°3

Consider the following program:

main(){

int x,y; char a,b ; float f';

int *pil, *pi2;

char *pcl, *pc2 ;

float *pfl, *pf2;

x=10; y=9; a='K"; b='S"; £=1.5;

pil=&x; pi2=& y; pcl=&a; pc2=&b ; pfl1=&f; pf2=pfl ;

printf(" Addresses in hexadecimal: pil = %X pi2 = %X \n", pil, pi2);
printf(" Addresses in decimal: pil = %d pi2 = %d \n", pil, pi2);
printf ("pcl= %d pc2= %d \n", pcl, pc2);

printf ("pfl= %d pf2= %d \n", pfl, pf2);

}

44|Page

1. Write a C program, allowing you to display the result of the following operations:
a) Increment of pointers pil, pcl and pfl;
b) Decrement of pointers pil, pcl and pfl;
c) Difference between: pil and pi2, pcl and pc2, pfl and pf2;
d) Addition of: pil and pi2, pcl and pc2, pfl and pf2.
2. Which of the above operations are not allowed for pointers.
Exercise n°4
Using the pointer formalism, write a C program that reads two arrays A and B and their

dimensions N and M, then adds the elements of B to the end of A.

Exercise n°5
Write a C program that reads an integer X and an array A of type integer and eliminates all
occurrences of X in A by packing the remaining elements. The program will use a pointer

PI.

Exercise n° 6

Write a C program using pointers that constructs a unitary matrix with dimension N (given
by the user).

NB: a unitary matrix is a square matrix whose diagonal elements are equal to 1 and the other

elements are zero.

45|Page

Section 2: Practical work -Solutions-

Part 1 : Records — Solutions-

Pedagogical objectives

v Handle custom types in C language, in terms of declaration and processing.

Solution of the exercise n°l

#include <stdio.h>
typedef struct Point
{ float x,y;

} Point;

typedef struct Circle
{ float xc;

float yc ;

float radius;

} Circle ;

typedef struct Rectangle
{ float Log, Lag ;

} Rectangle;

main ()

{

Point pl;

Circle cl;

Rectangle R1;

46| Page

Solution of the exercise n°2

47|Page

printf ("Enter the fields of point pl: \n");

scanf ("%f£sf",&pl.x,&pl.y) ;

printf (" Show the fields of point pl: [%$f ,
printf (

printf (" Enter the fields of circle cl: \n");
scanf (%f",&cl.xc, &cl.yc, &cl.radius)
printf (" Show the fields of circle cl: [%f,

cl.yc,cl.radius);

printf (

printf (" Enter the fields of rectangle Rl:
scanf ("%f%f",&R1l.Log, &R1.Lag) ;

printf ("Show the fields of rectangle R1l: [%f,

Rl1.Lag);

printf (

#include <stdio.h>
#include <math.h>
typedef struct panel/{
float width

int typeWood ;

main

(){ panel
p; float Vol;

printf ("\n Enter panel width:

scanf (

&p.width);

length, thickness ;

printf ("\n Enter panel length:

")

")

$f 1\n",

\n") ;

$f1\n",

scanf ("%f",&p.length);

printf ("\n Enter panel thickness ")

scanf ("$f",&p.thickness);

printf ("\n give the type of wood: ");

scanf (typeWood) ;

printf ("\n panel width: %.2f", p.width);

printf ("\n panel length: %.2f", p.length);

printf ("\n panel thickness %.2f", p.thickness);
printf ("\n wood type:

switch (p.typeWood) {

pl.x, pl.y);

R1.Log,

case 0: printf ("pin\n");

break;

case 1l: printf (" ocak \n");
break ;

case 2: printf (" beech \n");
break ;

default : printf ("unknown\n");

break ;}
Vol = (p.width * p.length * p.thickness)/pow(10,9);
printf ("\n panel volume is: $%$f", Vol);

}

Solution of the exercise n°3

#include <stdio.h>
#include <string.h>
typedef struct Date {

int day, month, year ;

} Date;
typedef struct

Address{ int

Number, PostalCode ;

char Street[20], Commune[20], Wilayal[20];
} Address;
typedef struct NP{

char Lastname[20], Firstname [20];
} NP;

typedef struct Employee

{ NP FirstName;

Date BirthDate;
Address Residence;

} Employee ;
main() { Empl

oyee E; int

ann ;

char w []="ALGER";

printf ("\n Employee name : ") ;
scanf ("%s",&E.FirstName.Lastname) ;

48 |Page

scanf ("%s", &E.FirstName.Firstname);

printf ("\n Date of birth:\n");
printf ("Day: ");

scanf ("%d", &E.BirthDate.day):;

printf ("\n Month:");

scanf ("%d", &E.BirthDate.month);
printf ("\n Year : ");

scanf ("%d", &E.BirthDate.year);
printf ("\n Employee residence :\n") ;
printf (" Number :");

scanf ("%d", &E.Residence.Number):;
printf ("\n Street : ");

scanf ("%s",&E.Residence.Street);
printf ("\ nCommon : ");

scanf ("%s", &E.Residence.Commune) ;
printf ("\n Wilaya : ");

scanf ("%s", &E.Residence.Wilaya);
printf ("\ n PostalCode : ");

scanf ("%d", &E.Residence.PostalCode);
printf ("\n Give year : ");

scanf ("%d", &ann);

if(E.BirthDate.year < ann) {

printf ("\n employee was born before year %d \n", ann); }
else {

printf ("\n employee was born after year %d \n", ann);}
printf ("Enter Wilaya \n");

scanf ("%s",&w);

if(strcmp

(E.Residence.Wilaya,w)==0){ printf
("Yes\n");}
else {

printf ("No\n");

49 |Page

Part 2: Sub-algorithms — Solutions-

Pedagogical objectives

v Handle procedures & functions in C;

Solution of the exercise n°l

1.

#include<stdio.h>
int power(int x, int y)
{

int result =1,1i;
for(i =0;1i< y;1i ++)
result = result *x;
return result ;

}

int main ()

{

int x=2 ,y =3,r;
r=power(x ,Vy);

printf("%d power %d = %d\n", x,y,r);}

50| Page

#include <stdio.h>

void power (int x,int y,int*r)
{

int 1 ;

*r=1;

for(1 =0;i< y;1i ++)

*r = *r*X,’

}

int main ()

{

int x=4 ,y =5,r;

power (x ,y ,&r);

printf ("%d power %d = %d\n"
}

r X, Y,) ;

#include <stdio.h>

void division(int a, int b, int * g, int * r)

*r = a % b;
*qg = a / b;

int a=17, b=3, g, r;

division(a,b, &g, &r);

printf ("%d=%d*%d+%d\n", a,b,q,r);
}

Solution of the exercise n°2

#include <stdio.h>
/*function prototypes*/

void grab(int [],int);

S1|Page

void display(int []1,int);

float calculate average (int[],int);

void find min max (int [], int , int *, int *);
main ()

{
int nb val ;

int min, max, table[100];

float average;

printf ("Number of elements:"); scanf ("%d", & nb val);
grab (table, nb val);

display(table, nb val);

average = calculate average (table , nb val);

printf ("Average = %f\n", average);

find min max(table, nb val , &min, &max);

printf ("Min = %d Max = %d\n", min, max);

}
/* entry of array elements */
void grab (int tab[], int nb)

{
int i ;

printf ("\n");

for (i =0; 1 < nb ; i ++)
{
printf ("Value of tab[%d] =", 1i);
scanf ("%d", &tab[i]):

}
}
/* Displaying array elements */
void display (int tab[], int nb)
{
int i ;

printf ("\n");

for (i =0; 1 < nb ; i ++)

{

52|Page

}
printf ("\n");
}

/* Calculating the average */

{

float average;

int sum;

int i;

sum = 0;

for (1 =0; 1 < nb ; i ++)

{

sum = sum + tab[1];

}

average = sum /(double (nb));

return average;

}

/* the min and max of the array */
void find min max (int tab [], int nb,
{

int val min , val max ;

int i ;

val min = tab[0];

val max = tab[0];

for (i =0; i < nb ; i ++)

{
if (tabl[i] < val min)
{
val min = tab[i];
}
else 1if (tab[i] > val max)
{

val max = tab[i];

printf ("tab[%d] = %d\n", 1 , tab[i 1);

float calculate average (int tab[], int nb)

int *pmin ,

int *pmax)

S53|Page

*pmin = val min ;

*pmax val max ;

Solution of the exercise n°3

#include <stdio.h>

/* Prototypes of functions n */

void ACQUIRE (int *);

float F(float);

void READ VECTOR (float[], int N);

void CALCULATE VALUES (float [], float [], int N);
void DISPLAY TABLE (float [], float [], int N);
main ()

{
/* Declaration of global variables */
float X[100]; /* values of X */

float V[100]; /* values of F(X) */

int Nb;

/* Function calls */

ACQUIRE (&Nb); /* 1 <= Number <= 100 */
READ VECTOR (X, Nb);

CALCULATE VALUES (X, V, Nb);

DISPLAY TABLE (X, V, Nb);

}

/* Definition of the ACQUIRE function */
void ACQUIRE (int *N)
{

do

{

printf ("Enter an integer between 1 and 100: ");
scanf ("%d",N);

54|Page

} while ((*N<1) || (*N>100));
}
/* Definition of the READ VECTOR function */
void READ VECTOR (float T[], int N)

{
/* Fills an array T of order N with real numbers entered from
the keyboard */
/* Declaration of local variables */
int I;
/* Fill the array */
printf ("Enter %d real numbers:\n", N);
for (I=0; I<N; I++)
scanf ("%f", &TI[I]);
}
/* Definition of function F */
float F(float X)
{
/* Returns the numerical value of the polynomial defined by F (X)
= X"3-2X+1 */
return (X*X*X - 2*X + 1);
}
/* Definition of the CALCULATE VALUES function */
void CALCULATE VALUES(float X[], float V[], int N)
{
/* Declaration of local variables */
int I;
for (I=0; I<N; I++)

1}
/* Definition of the DISPLAY TABLE function */
void DISPLAY TABLE (float X[], float V[], int N)
{

/* Declaration of local variables */

55|Page

int I;

/* Show table */
printf ("\nX: ");
for (I=0; I<N; I++)

printf ("&$f", X[I]);
printf ("\nEF(X): ");

for (I=0; I<N; I++)

printf ("Sf", VI[I]);
printf ("\n");}

56|Page

Part 3 : Recursive sub-algorithms -Solutions-

Pedagogical objectives

v Handle recursive procedures & functions in C;

Solution of the exercise n°l

#include <stdio.h>
int factorial (int);
int power (int, int);
main ()

{

int x, n;

printf ("Enter an integer: x = "); scanf ("%d",&x);
printf ("Enter an integer: n = "); scanf ("%d",&n);
printf ("%d",factorial (n));

printf ("\n %d ",power(x,n));

}
int factorial (int m)
{
if (m==0)
{
return 1;
}
else
{
return (m* factorial (m-1));
}
}

int power (int r, int k)

57|Page

{
if
{
return 1;
}

else

{
return
}

}

(k==0)

(r*power (r,k-1));

Solution of the exercise n°2

#include <stdio.h>
int Ackermann (int, int);
main ()
{
int x, vy
printf ("Enter an integer: x = "); scanf ("%d",&x);
printf ("Enter an integer: y = "); scanf ("%d",&y);
printf ("result %d", Ackermann(xX,Vy));
}
int Ackermann(int M, int N)
{ if(M == 0)
return N+1;
else
if (N==0 && M>0)
return (Ackermann (M-1,1));
else
return (Ackermann (M-1, (Ackermann (M, N-1))));
}

Solution of the exercise n°3

#include <stdio.h>

int Fibonacci (int);
main ()

{

int x;

printf ("Enter an integer:

scanf ("%d", &x) ;
printf ("result %d",
}

int Fibonacci (
{ iIf(N == 0)

int N)

return 0; else

X

")

Fibonacci (x)) ;

58| Page

if(N == 1) return 1;

else return (Fibonacci (N-1)+ Fibonacci (N-2));

}
}

59|Page

Part 4: Pointers and linked lists — Solutions-

Pedagogical objective

v' Manipulate pointers in C, pointer arithmetic and addressing the elements of an array;

v' Apply the “malloc” and “free” functions for dynamic memory allocation and release.

Solution of the exercise n°l

#include<stdio.h>
main ()
{

int a,b,s;

int *pa, *pb, *ps;

pa = &a;
pb = &b;
ps = &s;

printf ("Give two integers:\n");
scanf ("%d%d", pa,pb) ;
*ps = *pa + *pb;

printf ("The sum is %d.\n",s);

60| Page

Solution of the exercise n°2

1.
#include <stdio.h>
main ()
{
printf ("The size of a character is %d byte(s)", sizeof (char));
printf ("\n"); printf("The size of an integer short 1is %d
byte(s)", sizeof (short));
printf ("\n"); printf("The size of a long integer is %d
byte(s)", sizeof(long));
printf ("\n"); printf ("The size of a real number is %d byte(s)",
sizeof (float));
printf ("\n"); printf (" The size of the character string %s is

%d byte (s)","1234567",sizeof ("1234567"));}

2. For the string: the number of characters in the string is 7, however the number of bytes to

2

reserve is 8. The last byte is reserved for the end of string character “\0”".

Solution of the exercise n°3
1.

61| Page

#include <stdio.h>

main () {

int x,y; char a,b ; float f ;

int *pil, *pi2;

char *pcl, *pc2 ;

float *pfl, *pf2;

x=10; y = 9; a='K'; b='S'; f=1.5;

pil=& x; pi2=& y; pcl=& a; pc2=& b ; pfl=& f; pf2=pfl ;

printf (" Addresses in hexadecimal: pil = $X pi2 = %X \n", pil,

piZ2);

printf (" Addresses in decimal: pil = %d piZ2
printf ("pcl= %d pc2= %d \n", pcl, pc2);
printf ("pfl= %d pf2= %d \n", pfl, pf2);

// Increment

Il
o°
(o

printf (" pil +1 \n", pil++);

62|Page

= %d \n", pil, pi2);

printf (" pi2 +1 = %d \n", pi2++);
printf (" pcl +1 = %d \n", pcl++);
printf (" pc2 +1 = %d \n", pc2++);
printf (" pif +1 = %d \n", pfl++);
printf (" pf2 +1 = %d \n", pf2++);

// Decrement

printf (" pil -1 = %d \n", pil--);
printf (" pi2 -1 = %d \n", pi2--);
printf (" pcl -1 = %d \n", pcl--);
printf (" pc2 -1 = %d \n", pc2--);
printf (" pif -1 = %d \n", pfl--);
printf (" pf2 -1 = %d \n", pf2--);

// Difference

printf (" pil - pi2 = %d \n", pil - pi2);
printf ("pcl - pc2= %d \n", pcl - pc2);
printf ("pfl - pf2= %d \n", pfl - pf2);

}

2. Sum or addition is not allowed

Adding an integer to a pointer. The result is a pointer of the same type as the starting pointer;
Subtracting an integer from a pointer. The result is a pointer of the same type as the starting
pointer;

The difference of two pointers both pointing to objects of the same type. The result is an integer.

The sum of two pointers is not allowed.

Solution of the exercise n°4

#include <stdio.h>

#include <stdlib.h>

int main ()

{

int *A,*B; int n,m,i;

printf ("Give the dimension of A:");
scanf ("sd", &n) ;

printf ("Give the dimension of B:");

scanf ("%d", &m) ;

63|Page

A=(int*)malloc (n*sizeof (int)) ;
for (i=0;i<n;i++)

{

printf ("A[%d]=",1);

scanf ("%d", &A[i]) ;

}

B=(int*)malloc (m*sizeof (int)) ;
for (i=0;i<m;i++)

{

printf ("B[%d]=",1);

scanf ("%d", &B[1i]);

}

A= (int*)realloc (A, (n+m) *sizeof (int));
for (i=n;i<n+m;i++)
Ali]=B[i-n];

printf ("The array after fusion \n");
for (i=0;i<n+m;i++)

printf ("A[%d]=%d \n",1i,A[i]);
free (A);

free (B);

return O;

}

Solution of the exercise n°5

#include <stdio.h>
#include <stdlib.h>
main ()
{
/* Declaration */
int *A;
int N,1i;
int X;
int k=0;
int *P1l;
64| Page

printf ("Give the dimension of the array : ");
scanf ("sd", &N);

A=(int*)malloc (N*sizeof (int));

for (i=0; i<N; i++)

{

printf ("A[%d] : ", 1);

scanf ("%d", &* (A+1));

}

printf ("Introduce element X to eliminate from the array : ");
scanf ("sd", &X);

Pl=A;

for (i=0; i<N; i++)

if (A[i] != X)

{

k++;

}

/* Display the result */
for (i=0; i<k; i++)
printf("sd ", A[i]);
printf ("\n");

free (A);

}

Solution of the exercise n°6

#include <stdio.h>
#include <stdlib.h>
main ()
{
/* Declaration */
int **U; /* unitary matrix */
int N; /* dimension */
int I, J;
65|Page

printf ("Dimension of the square matrix: ");
scanf ("sd", &N);

/* Square matrix memory reservation */

U = (int**) malloc (N * sizeof (int*));

for (I = 0; I < N; I++)

U[I] = (int*) malloc (N * sizeof (int));

/* Construction of the unitary square matrix */
for (I=0; I<N; I++)

for (J=0; J<N; J++) 1if (I==J)

UlI][J]=1;
else
U[I]1[J1=0;

/* Display the result */

printf ("Unitary dimension matrix %d :\n", N);
for (I=0; I<N; I++)

{

for (J=0; J<N; J++)

printf ("%7d", U[I][J]); printf ("\n");

}

for (I=0; I<N; I++)

free(U[I]),; free(U);

}

66| Page

Bibliography

1. Neumann, Giinter. "Programming languages in artificial intelligence." Encyclopedia

of Information Systems (2002): 31-45.

2. Barnett, Granville, and Luca Del Tongo. "Data structures and algorithms: annotated

reference with examples." Pierrefonds, CA, NETSlackers (2008).

3. Karumanchi, Narasimha. Data Structures and Algorithmic Thinking with Python.
CareerMonk Publications, 2016.

4. Canning, John, Alan J. Broder, and Robert W. Lafore. Data Structures & Algorithms
in Python. Addison-Wesley, 2023.

5. Pierce, Benjamin C., ed. Advanced topics in types and programming languages. MIT
press, 2024.

6. LANGLOIS, Ph. (2013). Programmation en C — Exercices. Université¢ de Perpignan
Via Domitia

7. Helaoui, M. (2011). Travaux Dirigés : Algorithmique et Structure de
Données. 10.13140/2.1.3800.9601.

8. Helaoui, M. (2019). ASDI 2019 2020 v6.pdf.

https://www.researchgate.net/publication/337873900 ASDI 2019 2020 v6pdf

67|Page

https://www.researchgate.net/publication/337873900_ASDI_2019_2020_v6pdf

	Preamble
	Section 1: Tutorials -Exercises-
	Part 1 : Records
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercice n°5

	Part 2: Sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n° 2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n°6
	Exercise n°7
	Exercice n°8

	Part 3: Recursive sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5

	Part 4: Pointers and linked lists
	Pedagogical objective
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n°6
	Exercice n°7
	Exercice n°8
	We want to build a list of elements defined by rea
	Using the singly linked list data structure, write
	a) Creating the list of elements.
	b) Displaying the list of elements.
	c) Inserting an element at the K-th position in th
	d) Deleting a given element from the list.

	Section 1: Tutorials -Solutions-
	Part 1: Records - Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°4
	Solution of the exercise n°4

	Part 2: Sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n° 3
	Solution of the exercise n°4
	Solution of the exercise n° 5
	Solution of the exercise n°6
	Solution of the exercise n°7

	Part 3: Recursive sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4

	Part 4: Pointers and linked lists – Solutions-
	Pedagogical objective
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4
	Solution of the exercise n°5
	Solution of the exercise n°6
	Solution of the exercise n°7
	Solution of the exercise n°8
	Type Element = Record
	 Info: real;
	 Next: *Element;
	End;
	Type List: *Element;
	End;
	// Declarations
	Variables head, P, L: List;
	 flag: boolean;
	 add_element: char;
	 k, i: integer;
	 val: real;
	Begin
	// Create the list *******************************
	head ← Nil;
	flag ← true;
	While (flag = true) do
	 Allocate (P); // allocate memory space
	 Write ("Enter the value of the element");
	 Read ((*P).Info);
	 (*P).Next ← head;
	 head ← P;
	 // Confirm whether to add another element
	 Write ("Are there more elements? Y/N");
	 Read (add_element);
	 If (add_element = "N") Then
	 flag ← false;
	 EndIf
	EndWhile
	// Display list elements *************************
	P ← head; // point to the first element
	While (P ≠ Nil) do // traverse from first to last
	 Write ((*P).Info); // display the element
	 P ← (*P).Next; // move to next
	EndWhile
	// Insert an element at the K-th position ********
	Write ("Enter the position");
	Read (k);
	Write ("Enter the value to insert");
	Read (val);
	L ← head;
	If (k = 0) Then // insertion at the head
	 Allocate (P);
	 (*P).Info ← val;
	 (*P).Next ← head;
	 head ← P;
	Else
	 i ← 0;
	 While (i < k) and (L ≠ Nil) do
	 L ← (*L).Next;
	 i ← i + 1;
	 EndWhile
	 If (i = k) and (L ≠ Nil) Then
	 Allocate (P);
	 (*P).Info ← val;
	 (*P).Next ← (*L).Next;
	 (*L).Next ← P;
	 Else
	 Write ("Position does not exist");
	 EndIf
	EndIf
	// Delete a given element from the list **********
	If (head ≠ Nil) then
	 If ((*head).Info = val) then // delete first e
	 P ← head;
	 head ← (*P).Next;
	 Free (P); // free memory
	 Else
	 flag ← false;
	 Prev ← head;
	 P ← (*head).Next;
	 While (P ≠ Nil) and (flag = false) do
	 If ((*P).Info = val) Then
	 flag ← true;
	 Else
	 Prev ← P;
	 P ← (*P).Next;
	 EndIf
	 EndWhile
	 If (flag = true) Then
	 (*Prev).Next ← (*P).Next;
	 Free (P);
	 Else
	 Write ("Value does not exist");
	 EndIf
	 EndIf
	Else
	 Write ("The list is empty");
	EndIf
	End

	Section 2: Practical work -Exercises-
	Part 1 : Records
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n° 3

	Part 2: Sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3

	Part 3 : Recursive sub-algorithms
	Pedagogical objectives
	Exercise n°1
	Exercise n°2
	Exercise n°3

	Part 4: Pointers and linked lists
	Pedagogical objective
	Exercise n°1
	Exercise n°2
	Exercise n°3
	Exercise n°4
	Exercise n°5
	Exercise n° 6

	Section 2: Practical work -Solutions-
	Part 1 : Records – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	 Solution of the exercise n°2
	 Solution of the exercise n°3

	Part 2: Sub-algorithms – Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	Solution of the exercise n°2
	 Solution of the exercise n°3

	Part 3 : Recursive sub-algorithms -Solutions-
	Pedagogical objectives
	Solution of the exercise n°1
	 Solution of the exercise n°2
	Solution of the exercise n°3

	Part 4: Pointers and linked lists – Solutions-
	Pedagogical objective
	Solution of the exercise n°1
	Solution of the exercise n°2
	Solution of the exercise n°3
	Solution of the exercise n°4
	Solution of the exercise n°5
	Solution of the exercise n°6

	Bibliography

