Subject :	Level :	Exam:
Modeling, Simulation and Performance Evaluation	1 st Year Master (Distributed Architectures)	Final
Documents are not authorized	Time : 01h 30mn	Scientific calculator allowed

Saturday May 17, 2025

Answer clearly and succinctly

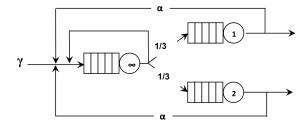
Exercise 01 (Comparison of Queues: 05 Marks)

Consider an M/M/1 queue with a service rate $\mu > 0$ and an M/M/2 queue with a service rate $\frac{\mu}{2}$. Both queues have an arrival rate $\lambda > 0$ and hence the same server utilization $\varrho = \frac{\lambda}{\mu}$.

- 1. Give the values of $P_{0M/M/1}$ and $P_{0M/M/2}$ in terms of ϱ .
- 2. Compare $P_{0M/M/1}$ and $P_{0M/M/2}$.
- 3. Give the values of $\overline{Q}_{M/M/1}$ and $\overline{Q}_{M/M/2}$ in terms of ϱ .
- 4. Compare $\overline{Q}_{M/M/1}$ and $\overline{Q}_{M/M/2}$.
- 5. Give the values of $\overline{N}_{M/M/1}$ and $\overline{N}_{M/M/2}$ in terms of ϱ .
- 6. Compare $\overline{N}_{M/M/1}$ and $\overline{N}_{M/M/2}$.

Exercise 02 (Queueing system: 05 Marks)

We want to design a web server to ensure the reception of at least 90% of the incoming requests (according to the Poisson process). The arrival rate of requests is 5 requests/second, and the service rate (exponential) is 6 requests/second. The average size of a request is 1500 bytes.


- 1. What is the queue that correctly models our system (with justification)?
- 2. What is the minimum memory size (in bytes) required to achieve our objective?
- 3. What is the average number of daily processed requests?
- 4. What is the average number of waiting requests?

Exercise 03 (Queueing Network: 10 Marks)

Consider the following Jackson network, where $\gamma=4, m_1=+\infty, m_2=1, m_3=2, \mu_1=5, \mu_2=8, \mu_3=6$

- 1. Give the internal and external routing probability matrices.
- 2. Find the effective arrival rates λ_i as a function of α .
- 3. Find the values of α that ensure network stability.

Let's take $\alpha = \frac{1}{2}$. Find in this case :

- 4. The average number of waiting clients at each station and in the network.
- 5. The average number of clients at each station and in the network.
- 6. The average residence time in each station and in the network.
- 7. The average waiting time at each station and in the network.
- 8. The probability that the network is not empty.

Note 1: use at least 6 digits after the decimal point in all your calculations.