Larbi Ben M'hidi University –Oum El Bouaghi **Department of Mathématics and Informatics**

Faculty of E.S.&N.L.V. **Distributions 1 (Master 1 : M.A.)**

0.5

1

Normal session Examen (13/05/2025): Solution + Marking scale

Exercice 1. (6,5pts)

Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie :

$$f(x) = \begin{cases} 1 & \text{si } x \in]0,1], \\ 2 - x & \text{si } x \in]1,2], \\ 0 & \text{sinon.} \end{cases}$$

(1) Montrer que $f, f' \in L^1_{loc}(\mathbb{R})$.

D'abord, on trouve

$$f'(x) = \begin{cases} -1 & \text{si } x \in]1,2], \\ 0 & \text{sinon.} \end{cases}$$
 0.5

On a

$$0 \le \int_{K} f(x) \, dx \le \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx \le \int_{0}^{2} f(x) \, dx = \int_{0}^{1} dx + \int_{1}^{2} (2 - x) \, dx = \frac{3}{2},$$

et

$$0 \ge \int_K f'(x) \, dx \ge \int_{-a}^a f'(x) \, dx = \int_0^a f'(x) \, dx \ge \int_1^2 f'(x) \, dx = -\int_1^2 dx = -1$$

pour tout compact $K \subset [-a, a]$ dans \mathbb{R} . Ainsi donc, $f, f' \in L^1_{loc}(\mathbb{R})$.

(2) Calculer la distribution T_f sur \mathbb{R} . En déduire que : $(T_f)' = \delta_0 - \mathbf{1}_{[1,2]}$ au sens des distributions.

Comme $f \in L^1_{loc}(\mathbb{R})$, la distribution T_f est bien définie sur \mathbb{R} . On a

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}} f(x) \varphi(x) \, dx = \int_0^1 \varphi(x) \, dx + \int_1^2 (2 - x) \varphi(x) \, dx \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}).$$

Ainsi donc,

$$\langle (T_f)', \varphi \rangle = -\langle T_f, \varphi' \rangle = -\int_{\mathbb{R}} f(x) \varphi'(x) \, dx$$

$$= -\int_{0}^{1} \varphi'(x) \, dx - \int_{1}^{2} (2 - x) \varphi'(x) \, dx$$

$$= -\varphi(x)|_{0}^{1} - (2 - x) \varphi(x)|_{1}^{2} - \int_{1}^{2} \varphi(x) \, dx$$

$$= \varphi(0) - \int_{1}^{2} \varphi(x) \, dx = \langle \delta_0, \varphi \rangle - \langle \mathbf{1}_{]1,2]}, \varphi \rangle$$

$$= \langle \delta_0 - \mathbf{1}_{]1,2]}, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

$$| (\mathbf{T}_f)', \varphi \rangle = -\langle T_f, \varphi' \rangle = -\langle T_f, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

$$| (\mathbf{T}_f)', \varphi \rangle = -\langle T_f, \varphi' \rangle = -\langle T_f, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

$$| (\mathbf{T}_f)', \varphi \rangle = -\langle T_f, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

$$| (\mathbf{T}_f)', \varphi \rangle = -\langle T_f, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

i.e. $(T_f)' = \delta_0 - \mathbf{1}_{]1,2]}$ au sens des distributions.

(3) Déterminer $T_{f'}$ dans $\mathfrak{D}'(\mathbb{R})$. Que remarque-t-on ?

Comme $f' \in L^1_{loc}(\mathbb{R})$, la distribution $T_{f'}$ est bien définie sur \mathbb{R} . On a

$$\langle T_{f'}, \varphi \rangle = \int_{\mathbb{D}} f'(x) \varphi(x) \, dx = -\int_{1}^{2} \varphi(x) \, dx = -\langle \mathbf{1}_{]1,2]}, \varphi \rangle = \langle -\mathbf{1}_{]1,2]}, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$

i.e. $T_{f'} = -\mathbf{1}_{[1,2]}$ dans $\mathfrak{D}'(\mathbb{R})$.

On remarque que

$$(T_f)' = T_{f'} + \delta_0$$
 dans $\mathfrak{D}'(\mathbb{R})$,

ce qui pouvait être obtenu grâce au Théorème des sauts.

Larbi Ben M'hidi University –Oum El Bouaghi Department of Mathématics and Informatics

Faculty of E.S.&N.L.V. Distributions 1 (Master 1 : M.A.)

Normal session Examen (13/05/2025) : Solution + Marking scale

Exercice 2. (7,5pts)

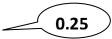
Soit $\{f_n\}_{n\in\mathbb{N}^*}$ la suite des fonctions définies sur \mathbb{R} par

$$f_n(x) = \begin{cases} n & \text{si } x \in \left]0, \frac{1}{n}\right[, \quad \forall n \in \mathbb{N}^*. \end{cases}$$

(1) Est-ce que $\{f_n\}_{n\in\mathbb{N}^*}$ converge ?

Soit $x \in \mathbb{R}$ et calculons $\lim_{n \to +\infty} f_n(x)$.

Si $x \le 0$, alors $f_n(x) = 0$. Donc,



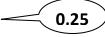
$$\lim_{n\to+\infty}f_n(x)=0.$$

Si x > 0, alors il existe $n_0 \in \mathbb{N}^*$ tel que $x > \frac{1}{n_0}$. D'où, pour tout $n \ge n_0$, on a $f_n(x) = 0$. Donc,

$$\lim_{n\to+\infty}f_n(x)=0.$$

0.5

Par conséquent, $\{f_n\}_{n\in\mathbb{N}^*}$ converge vers $f\equiv 0$.



(2) Montrer que $\{T_{f_n}\}_{n\in\mathbb{N}^*}$ converge dans $\mathfrak{D}'(\mathbb{R})$ vers δ_0 . En déduire que $\{T_{f_n^2}\}_{n\in\mathbb{N}^*}$ ne converge pas dans $\mathfrak{D}'(\mathbb{R})$.

D'abord, on a

$$0 \le \int_{K} f_{n}(x) dx \le \int_{-a}^{a} f_{n}(x) dx \le \int_{0}^{1/n} n dx = 1,$$

0.5

pour tout compact $K \subset [-a, a]$ dans \mathbb{R} . Ainsi donc, $\{f_n\}_{n \in \mathbb{N}^*} \subset L^1_{loc}(\mathbb{R})$.

Pour montrer que $\{T_{f_n}\}_{n\in\mathbb{N}^*}$ converge dans $\mathfrak{D}'(\mathbb{R})$ vers δ_0 , il suffit d'établir que

$$\lim_{n \to +\infty} \langle T_{f_n}, \varphi \rangle = \langle \delta_0, \varphi \rangle \quad \forall \varphi \in \mathfrak{D}(\mathbb{R}).$$

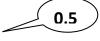
0.5

On a

$$\langle T_{f_n}, \varphi \rangle = \int_{\mathbb{R}} f_n(x) \varphi(x) dx \qquad \forall n \in \mathbb{N}^*,$$

et donc,

$$\begin{aligned} \left| \langle T_{f_n}, \varphi \rangle - \langle \delta_0, \varphi \rangle \right| &= \left| \int_{\mathbb{R}} f_n(x) \varphi(x) \, dx - \varphi(0) \right| = \left| \int_0^{1/n} n \varphi(x) \, dx - \varphi(0) \right| \\ &= \left| \int_0^{1/n} n [\varphi(x) - \varphi(0)] dx \right| \le n \int_0^{1/n} |\varphi(x) - \varphi(0)| \, dx \end{aligned}$$



 $\forall n \in \mathbb{N}^*$.

0.5

Le théorème des accroissements finis assure qu'il existe $\xi \in \left[0, \frac{1}{2}\right]$ tel que :

$$\varphi(x) - \varphi(0) = x\varphi'(\xi).$$

0.25

Il s'ensuit

$$\left| \langle T_{f_n}, \varphi \rangle - \langle \delta_0, \varphi \rangle \right| \le n \int_0^{1/n} x |\varphi'(\xi)| \, dx \le nM \int_0^{1/n} x \, dx = \frac{M}{2} \frac{1}{n} \qquad \forall n \in \mathbb{N}$$

où,

$$M = \sup_{t \in \mathbb{R}} |\varphi'(t)| = \|\varphi'\|_{\infty}.$$

Par conséquent,

$$\lim_{n \to +\infty} \left| \langle T_{f_n}, \varphi \rangle - \langle \delta_0, \varphi \rangle \right| = 0,$$

0.25

0.5

i.e.

Larbi Ben M'hidi University –Oum El Bouaghi Department of Mathématics and Informatics

Faculty of E.S.&N.L.V. Distributions 1 (Master 1 : M.A.)

0.25

0.25

0.25

0.5

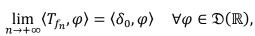
0,25

0.25

0.5

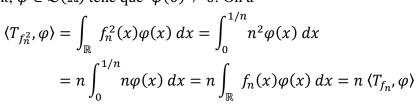
0.25

Normal session Examen (13/05/2025) : Solution + Marking scale

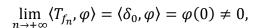


i.e. $\{T_{f_n}\}_{n\in\mathbb{N}^*}$ converge dans $\mathfrak{D}'(\mathbb{R})$ vers δ_0 .

Soit, maintenant, $\varphi \in \mathfrak{D}(\mathbb{R})$ telle que $\varphi(0) \neq 0$. On a



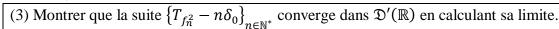
Comme



on déduit que

$$\lim_{n\to+\infty}\langle T_{f_n^2},\varphi\rangle=\pm\infty,$$

i.e. $\{T_{f_n^2}\}_{n\in\mathbb{N}^*}$ ne converge pas dans $\mathfrak{D}'(\mathbb{R})$.



Soit $\varphi \in \mathfrak{D}(\mathbb{R})$. On a

$$\langle T_{f_n^2} - n\delta_0, \varphi \rangle = \langle T_{f_n^2}, \varphi \rangle - n \langle \delta_0, \varphi \rangle = n^2 \int_0^{1/n} [\varphi(x) - \varphi(0)] dx.$$

Au voisinage de 0, le développement en série de Taylor donne

$$\varphi(x) = \varphi(0) + x\varphi'(0) + \frac{x^2}{2}\varphi''(\xi_x),$$

avec $\xi_x \in]0, x[$.

D'où,

$$\langle T_{f_n^2} - n\delta_0, \varphi \rangle = n^2 \int_0^{1/n} \left[x \varphi'(0) + \frac{x^2}{2} \varphi''(\xi_x) \right] dx = \frac{1}{2} \varphi'(0) + \frac{n^2}{2} \int_0^{1/n} x^2 \varphi''(\xi_x) dx.$$
Mais.

$$\begin{split} \left| \frac{n^2}{2} \int_0^{\frac{1}{n}} x^2 \varphi''(\xi_x) \ dx \right| &\leq \frac{n^2}{2} \int_0^{\frac{1}{n}} x^2 |\varphi''(\xi_x)| \ dx \\ &\leq \frac{n^2}{2} \sup_{t \in \mathbb{D}} |\varphi''(t)| \int_0^{1/n} x^2 dx = \frac{1}{2n} \|\varphi''\|_{\infty}. \end{split}$$

Par conséquent,

$$\lim_{n\to +\infty} \langle T_{f_n^2} - n\delta_0, \varphi \rangle = \frac{1}{2} \varphi'(0) = \frac{1}{2} \langle \delta_0, \varphi' \rangle = -\frac{1}{2} \langle \delta_0', \varphi \rangle = \langle -\frac{1}{2} \delta_0', \varphi \rangle \qquad \forall \varphi \in \mathfrak{D}(\mathbb{R}),$$
 i.e.
$$\lim_{n\to +\infty} \left(T_{f_n^2} - n\delta_0 \right) = -\frac{1}{2} \delta_0' \quad \text{dans } \mathfrak{D}'(\mathbb{R}).$$

Normal session Examen (13/05/2025): Solution + Marking scale

Exercice 3. (6pts)

(1) Soit E un e.v.t. Montrer que l'intersection de tous les voisinages de 0 est égale à $\{0\}$ et représente un sous-espace vectoriel de E. En déduire que E est de Hausdorff si, et seulement si, {0} est fermé.

Dénotons par \mathcal{N} l'intersection de tous les voisinages de 0. Evidemment, on a $\{0\} \subset \mathcal{N}$. 0.25 Inversement, soit $x \in \mathcal{N}$. Alors, tout voisinage de 0 contient x.

0.25

0.25

Ainsi donc, tout voisinage de x contient 0.

D'où, x adhère à $\{0\}$, i.e. $x \in \overline{\{0\}}$.

En résumé, on obtient $\mathcal{N} = \overline{\{0\}}$.

Comme $\{0\}$ est un sous-espace de E, son adhérence $\overline{\{0\}} = \mathcal{N}$ l'est aussi.

Dire que $\{0\}$ est fermé revient à dire que $\mathcal{N} = \{0\}$, ou qu'aucun élément $x \in E \setminus \{0\}$ ne peut appartenir à tous les voisinages de 0. 0.75

Par conséquent, {0} est fermé si, et seulement si, *E* est de Hausdorff.

0,25

(2) Soient $U \subset \mathbb{R}^{n_1}$, $V \subset \mathbb{R}^{n_2}$ $(n_1, n_2 \in \mathbb{N}^*)$ deux ouverts, et F une fonction de classe \mathcal{C}^{∞} sur $U \times V$. Pour toute $\varphi \in L^1_{loc}(V)$, on pose :

$$\psi(x) = \int_{V} F(x, y)\varphi(y) dy \quad \forall x \in U.$$

Montrer que l'application $\mathcal{K}: \varphi \to \psi$ envoie continûment $L^1_{loc}(V)$ dans $\mathcal{E}(U)$.

D'après le théorème de dérivation sous le signe \(\int \), on a

0,5

$$(D^{\alpha}\psi)(x) = \int_{V} (D_{x}^{\alpha}F)(x,y)\varphi(y) dy \qquad \forall x \in U, \alpha \in \mathbb{N}^{n}.$$

Ceci montre que $\psi \in \mathcal{E}(U)$. L'application $\mathcal{K} : \varphi \to \psi$ est bien définie de $L^1_{loc}(V)$ dans $\mathcal{E}(U)$.

0.5

Soit K un compact dans V. Si H est un compact dans U et $m \in \mathbb{N}$, alors on a

 $p_{H,m}(\mathcal{K}(\varphi)) = \sup_{x \in H} \sup_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| \le m}} \left| \left(D^{\alpha} \mathcal{K}(\varphi) \right)(x) \right|$ $\leq \sup_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| \leq m}} \int_K \sup_{x \in H} |(D_x^{\alpha} F)(x, y)| |\varphi(y)| dy$

$$\leq \left(\sup_{\substack{(x,y) \in H \times K \\ |\alpha| \leq m}} \sup_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| \leq m}} |(D_x^{\alpha} F)(x,y)| \right) \int_K |\varphi(y)| \, dy$$

$$\leq \left(\sup_{\substack{(x,y)\in H\times K\\|\alpha|\leq m}}\sup_{\alpha\in\mathbb{N}^n}|(D_x^\alpha F)(x,y)|\right)\|\varphi\|_{L^1(V)}\quad\forall\varphi\in L^1_{loc}(V).$$

Cela montre que l'application \mathcal{K} est continue de $L^1_{loc}(V)$ dans $\mathcal{E}(U)$.

