Larbi Ben M'hid University Master 01 Mathematics Exam: Optimization

Exercise 01: First Necessary Condition of Optimality (6 points) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function.

Let $x^* \in \mathbb{R}$ be a local minimum of f.

State and prove the first-order necessary condition for optimality in equality constrained case.

Exercise 02: Optimization with Equality Constraints (Lagrange Multipliers) (6 points)

Use the method of Lagrange multipliers to solve the following optimization problem:

Minimize the function:

$$f(x, y, z) = x + z$$

Subject to the constraint:

$$g(x, y, z) = x^2 + y^2 + z^2 - 1$$

- Find the critical points of the Lagrangian.

- Determine the nature

Exercise 03: Optimization with Inequality Constraints (KKT Conditions) (6 points)

Let consider the problem

$$\begin{cases} \max & xy - x^2 - y^2 \\ s.c \\ .2x + y \ge 5, y \ge 3 \end{cases}$$

- Find all the critical points

- Determine the nature of the critical point(s)

Exercise 04: Optimization Theorems (2 points) Fill in the Gaps

(1) Let the function f be a _____ function, and let the feasible set be non-empty, closed, and _____.

Then there exists at least one minimum point

This result is known as the Theorem of _____

(2) If the function f is _____ convex, and the feasible set is convex, then the global minimum is _____ if it exists.

This is known as the Theorem of _____.

(3) If a function is both coercive and _____, then it reaches its minimum on any closed set.