Oum El bouaghi University MI Department S1 -Maths 03-Exam (Optimization)

Exercise 1 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous and coercive function. Prove that f attains its minimum, i.e., there exists a point

 $\mathbf{x}^* \in \mathbb{R}^n$, such that $\mathbf{f}(\mathbf{x}^*) = \min \mathbf{f}(\mathbf{x})$

- Does the theorem hold if f is coercive but not continuous? Justify your answer

- Do these conditions guarantee the existence of both a minimum and a maximum for f?

If not provide the theorem that guarantees the existence of both a minimum and a maximum (without proof)

Exercise 2 Let $f : \mathbb{R}^n \to \mathbb{R}$

Suppose that at a point x^* , we have $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is negative definite

Prove that x^* is a strict local maximum of f

Exercise 3 Consider the function

$$f(x,y) = y^2 + xy\ln(x).$$

- Find the critical point

- Give the nature

Exercise 4 Consider the following function

$$f(x,y) = x^2 + y^2 - 2x - 2y$$

- What is the general form of the Gradient Descent algorithm?

- Does the Gradient Descent algorithm help in finding a local or global minimum?

- What happens if the step size is too large?

- What happens if the step size is too small?

-Start with the initial point $(x_0, y_0) = (2,3)$ and $\alpha = 0.1$. Apply the gradient descent to find the value of iteration (x_2, y_2) .

Correction Exam (Optimization)

Exercise 01(6 pts)

1- The coercivity implies that the function grows to infinity as x moves away from the origin,

which ensures that the function cannot have arbitrarily low values at infinity.

To apply the Weierstrass theorem, we need to show that f attains a minimum on a compact set.

Since f is coercive, we know that values of f will become arbitrarily large outside of a sufficiently large ball, say B(0,R)

Thus, the minimization problem can be restricted to a compact set B(0, R)On this compact set, the function f is continuous,

and by the Weierstrass extreme value theorem, a continuous function on a compact set attains its minimum. (03 points)

2- If f is coercive but not continuous, the theorem may not hold, because continuity is crucial to guarantee the existence of an actual minimum. (01 points)

3- The given conditions (coercivity and continuity) do not guarantee the existence of both a minimum and a maximum (01 points)

4- Theorem that guarantees both minimum and maximum (without proof): The Weierstrass extreme value theorem (1 points)

Exercise 02 $(04 \ pts)$

See (The sufficient conditions for optimality in the course) (04points)

Exercise 03 $(05 \ pts)$ Given function:

$$f(x,y) = y^2 + xy\ln(x).$$

- The critical point (Critical points occur where the first-order partial derivatives are equal to zero)

Critical points: (1,0) and $(\frac{1}{e},\frac{1}{2e})(02 \text{ points})$ - Determine the nature of the critical points (To determine the nature, we

At (1,0): $H_f = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ Since D = -1 < 0, the point (1,0) is a saddle point. (01.5 points)

At $\left(\frac{1}{e}, \frac{1}{2e}\right)$: $H_f = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{pmatrix}$ Since D > 0, and $a_{11} > 0$, the point $\left(\frac{1}{e}, \frac{1}{2e}\right)$ is a local minimum point. (01.5 points)

Exercise 04 $(5 \ pts)$

Consider the following function

$$f(x,y) = x^2 + y^2 - 2x - 2y$$

-General Form of the Gradient Descent Algorithm (01 points)

$$\begin{cases} (x_0, y_0) \text{ given} \\ (x_{k+1}, y_{k+1}) = (x_k, y_k) - \alpha \nabla f(x_k, y_k) \end{cases}$$

- Does the Gradient Descent algorithm help in finding a local or global minimum? (0.5 points)

For convex functions, Gradient Descent converges to the global minimum,

For non-convex functions, gradient descent may get trapped in local minima.What happens if the step size is too large? (0.5 points)

If the step size α is too large, the algorithm may: Overshoot the minimum and fail to converge,

- What happens if the step size is too small? (0.5 points)

If the step size α is too small, the algorithm may: Converge very slowly, taking many iterations to reach the minimum,

-Start with the initial point $(x_0, y_0) = (2,3)$ and $\alpha = 0.1$. Apply the gradient descent to find the value of iteration (x_2, y_2) . (02.5 points)

First iteration (k = 1) $(x_1, y_1) = (1.8, 2.6)$ and $\|\nabla f\| = 3.58$ Second iteration (k = 2) $(x_2, y_2) = (1.64, 2.28)$