Larbi Ben M'Hidi University –Oum El Bouaghi	2024/2025
Faculty of exact sciences, natural and life sciences	Duration: 1h30
Department: Matter Sciences	1st year MS

Exam: Mathematics 1

Exercice 01:

For $n \in \mathbb{N}^*$, let $S_n = \sum_{k=1}^n k(k+1)$ and $T_n = \sum_{k=1}^n k^2$.

- 1. Compute S_1, T_2 .
- 2. Show by induction that $\forall n \in \mathbb{N}^*$: $S_n = \frac{n(n+1)(n+2)}{3}$.
- 3. Calculate $\sum_{k=1}^{n} k$, prove that $T_n = S_n \sum_{k=1}^{n} k$, and deduce T_n from these results.

Exercice 02:

We define in $\mathbb{R} \times \mathbb{R}^+$ a relation \mathcal{R} by:

$$\forall (x,y), (x',y') \in \mathbb{R} \times \mathbb{R}^+ : (x,y)\mathcal{R}(x',y') \Longleftrightarrow x(1+y') = x'(1+y)$$

1. Show that \mathcal{R} is an equivalence relation.

2. Determine the equivalence class of $\left(-1, \frac{1}{2}\right)$, respectively.

Exercice 03:

1. Let the function f be defined by:

$$f(x) = \frac{1}{1 - e^{2x - 1}},$$

- (a) Determine D_f , the domain of definition of f.
- (b) Compute $f(\{3, -\frac{1}{2}\})$.
- (c) Show that f is injective.
- (d) Is it surjective?
- 2. Let the function g defined by:

$$g(x) = \begin{cases} 2x - 4 \text{ if } x \le 0, \\ \frac{1}{2}x - 2 \text{ if } 0 < x < 4, \\ 2x^2 - 5x + 4 \text{ if } x \ge 4 \end{cases}$$

Study the continuity of this function.

Exercice 04:

We provide $A = \mathbb{R} \times \mathbb{R}$ with two operations defined by: (x, y) + (x', y') = (x + x', y + y') and $(x, y) \times (x', y') = (xx', xy' + x'y)$

- 1 Show that (A, +) is a commutative group.
- 2 a Show that the operation \times is commutative.
 - b Show that \times is associative.
 - c Find the neutral element of A for the operation \times .
 - d Show that $(A, +, \times)$ is a commutative ring.