

Larbi Ben M'hidi University

Faculty of Exact Sciences, Natural and Life Sciences 1st year LMD (2024-2025)

Exams in physics I

Name:	Section:	Date: 05-01-2025	
Surname:	Group:	Duration: 01h30	

Exercise 1: (3 points)

The gravitational force between two objets the erarth and the moon of the masses M=5.97 \times 10^{24} Kg and m =7.35 \times 10^{22} Kg is $1.98\times$ 10^{20} N. Calculate the distance between the centers of the earth and moon. The gravitational constant G =(6.67 \times 10^{-11} N m²/kg²).

Exercise 2: (7 points)

The movement of a point M is described in polar coordinates by: $\begin{cases} r = b \\ \varphi = \frac{1}{3}t^3 \end{cases}$ Where **b** is positive constant.

1. Write the position vector of point M in polar coordinates.

$$\overrightarrow{OM} = x\vec{i} + y\vec{j} \qquad \overrightarrow{OM} = b\left(\sin\varphi\vec{i} + \cos\varphi\vec{j}\right) \qquad \overrightarrow{OM} = b\left(\cos\varphi\vec{i} + \sin\varphi\vec{j}\right) \qquad \overrightarrow{OM} = b\overrightarrow{U}_{r} \qquad \overrightarrow{OM} = b\overrightarrow{U}_{r}$$

2. Calculate the velocity vector of point M in polar coordinates.

3. Calculate the magnitude of the velocity vector of point M in polar coordinates.

$$v = \sqrt{v_{\varphi^2}} \qquad v = b t^2 \qquad v = \sqrt{\dot{x}^2 + \dot{y}^2}$$

4. Calculate the acceleration vector of point M in polar coordinates.

		5. Calculate the magnitude of the acceleration vector of point M in polar coordinates.			
				(a. 15)	
		$a = \sqrt{a_r^2 + a_{\varphi}^2} \qquad \qquad a = \sqrt{4b^2t^2}$	$b \qquad \qquad \boxed{\qquad a = \sqrt{\ddot{x}^2 + \ddot{y}^2}}$		
		6. Find the Cartesian coordinates (x, y) of point M	ı.		
	********	x=rcos + (PIN y=r	- sin & GIP		
		$y = b \cos \frac{1}{3} t^3$ $y = b \cos \frac{1}{3} t^3$		$\sqrt{\frac{b \sin \frac{1}{3}t^3}{t^3}}$	
				35	
		Exercise 3: (7 points)		77	
		A skier of mass m = 65 kg has a rectilinear movem	nent on a slope inclined		
		at an angle $\alpha = 15^{\circ}$ with the horizontal. The skier		No.	
		equivalent to a force of value f_k = 10 N. Initially, the		a a	
		the frame (Ox, Oy) without initial velocity. g=9.810		à	
		Represent qualitatively the external forces exerte	2/-	W=mg	
	_	2. What is the intensities of the normal forces N for		0	
		F= ma = N+w+fn=ma		- Al / F & P4c	
	The	projection on an axis (oy) = 1	N_mg cosd =	0 = 0 IV = 65 63,01/h	
			□ N=165103N	X N=615,92 NO15	
		3. What is the acceleration of the skier?		4	
	SF	xtoma - N+W+fn-ma	the projection (ox)) = a = fu + ing Sin o	
		$a = 2.69 \ m/s^2$ $a = 2 \ m/s^2$	$a = 2.38 \ m/s^2$		
		4. Show that the skier has a uniformly accelerated	A	1	
		a=2,38 m/s= = the Unifo	•		
		5. In what is the time required for the skier in order	r to ke much time will the	skier have travel	
	0	300 m at a velocity of value 26.72 (m/s) ?	P 3 8 + 4 - 2	16,72	
****	-	dt vi tila de de		2,38	
			t = 22.26s	t = 11.22s	

6. Find the coefficient of kinetic friction μ_k for the skier?

- $\mu_k = 0.59$
- $\mu_k = 0.16N$
- $\mu_k = 0.06$

Exercise 4: (3 points)

Let a point M located in the (OXY) plane with the following parametric equations:

$$\begin{cases} x(t) = \frac{1}{2}t^2 + 4t - 1 & \dots & \emptyset \\ y(t) = \frac{1}{2}t^2 + 4t - 2 & \dots & \emptyset \end{cases}$$

1. Deduce the equation of the trajectory.

2. What is its nature and represent it graphically? the notine is a straight line (rectilinear)

