L'arbi Ben M'hidi Oum El Bouaghi university Department of mathematics Teacher: Y.SOULA Module: Algebra 1 University year: 2024 - 2025Date: 19/01/2025, Time: 1h30m **Correction** typical Exercise 1. (7 points) 1) a) the negation is given by $\exists x \in \mathbb{R} : 2x < x....(1pt)$ **b**) the negation of proposition (b) is given by $\exists x \in \mathbb{R} : x > 0 \land 2x < x....(1pt)$ c) the negation is given by $\forall n \in \mathbb{N}, \quad 5n+11 \neq 3n+14...(1pt)$ d) the negation is given by 2) proposition (a) is false because its negation is true. proposition (b) is true. For the proof, we proceed as follows let $x \in \mathbb{R}$, suppose that x > 0 hence 2x = x + x > xthis completes the proof.....(3pt)3) proposition (c) is false. Solving the equation 5n + 11 = 3n + 14we find that the only solution is $n = \frac{3}{2}$, or $\frac{3}{2} \notin \mathbb{N}$ Therefore $\forall n \in \mathbb{N}: \quad 5n+11 \neq 3n+14$ is true, or proposition " $\exists n \in \mathbb{N}$, 5n + 11 = 3n + 14" is false. Exercise 2. 1) \Re is reflexive because: $\forall x \in \mathbb{R}, e^x \leq e^x$, So, $x \Re x$(1.5*pt*) **2)** \Re is not symmetric because: **3)** \Re is anti-symmetric because: $\forall x,y \in \mathbb{R}, \ x \Re y \wedge y \Re x \Leftrightarrow e^x \leq e^y \wedge e^y \leq e^x$ $\Rightarrow e^x = e^y \Leftrightarrow x = y.\dots(1.5pt)$ 4) \Re is transitive because:

In conclusion \Re is an order relation but it is not an equivalence relation. Exercise 3.

 $\overline{\mathbf{1}}(x,y) + (x',y') = (x+x',y+y') \in A \text{ so the law + is internal.....(0.5pt)}$ $\text{Let } (x,y), (x',y'), (x'',y'') \in A, \text{ we have:}$ (x,y) + [(x',y') + (x'',y'')] = (x,y) + (x'+x'',y'+y'') = (x + (x'+x''), y + (y'+y''))

$$= ((x + x') + x'', (y + y') + y'') = [(x, y) + (x', y')] + (x'', y'').$$

So the law + is associative.....(1pt)

Let $(x, y), (x', y') \in A$, we have: (x, y) + (x', y') = (x + x', y + y') = (x' + x, y' + y)= (x', y') + (x, y).

So the + law is commutative......(1pt)

Let $(a, b) \in A = \mathbb{R} \times \mathbb{R}$, such that (x, y) + (a, b) = (x, y), it is clear that (a, b) = (0, 0) is the unique neutral element.....(1*pt*)

Let $(x', y') \in A = \mathbb{R} \times \mathbb{R}$ such that (x, y) + (x', y') = (0, 0)this is equivalent to: $(x + x', y + y') = (0, 0) \Leftrightarrow \begin{cases} x + x' = 0\\ y + y' = 0 \end{cases} \Leftrightarrow \begin{cases} x' = -x\\ y' = -y \end{cases}$ So the symmetric of (x, y) is (-x, -y).....(1pt)

So (A, +) is a commutative group.

2)
a)
$$\forall (x,y), (x',y') \in A : (x,y) \star (x',y') = (xx',xy' + x'y)$$

 $= (x'x,y'x + yx')$
 $= (x'x,x'y + xy')$
 $= (x',y') \star (x,y)$
So \star is commutative.....(0.5pt)

$$\begin{aligned} \mathbf{b}) &\forall (x,y), (x^{'},y^{'}), (x^{''},y^{''}) \in A : \\ & [(x,y) \star (x^{'},y^{'})] \star (x^{''},y^{''}) = (xx^{'},xy^{'} + x^{'}y) \star (x^{''},y^{''}) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}(xy^{'} + x^{'}y)) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}xy^{'} + x^{''}x^{'}y)) \\ & (x,y) \star [(x^{'},y^{'}) \star (x^{''},y^{''})] = (x,y) \star (x^{'}x^{''},xx^{'}y^{''} + x^{''}y^{'}) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}y^{'}) + x^{'}x^{''}y) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}y^{'}) + x^{''}x^{''}y) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}xy^{'} + x^{''}x^{''}y) \\ & = (xx^{'}x^{''},xx^{'}y^{''} + x^{''}xy^{''} + x^{''}x^{''}y) \\ & = (xx^{'}x^{''},xx^{''}y^{''} + x^{''}xy^{''} + x^{''}x^{''}y^{''} + x^{''}xy^{''} + x^{''}x^{''}y) \\ & = (x^{'}x^{''},xx^{''}y^{''} + x^{''}xy^{''} + x^{''}x^{''}y^{''} + x^{''}xy^{''} + x^{''}xy^{''} + x^{''}x^{''}y^{''} + x^$$

From (1) and (2) we find that: $[(x, y) \star (x', y')] \star (x'', y'') = (x, y) \star [(x', y') \star (x'', y'')]$ So the law \star is associative.....(0.5pt)

c)

Let
$$(e, f) \in A$$
 such that for all $(x, y) \in A$,
 $(x, y) \star (e, f) = (x, y) \Leftrightarrow \begin{cases} xe = x \\ xf + ey = y \end{cases} \Leftrightarrow \begin{cases} e = 1 \\ f = 0 \end{cases}$
 $(1, 0) \in A$ is the neutral element of A for the law \star(0.5pt)

All the properties for a set with two laws to be a ring are in the previous questions except the distributivity of \star with respect to addition (+) (to the left or to the right since the law \star is commutative, it is moreover this commutativity which makes the ring commutative). It is moreover this commutativity which makes the ring commutative). $(x,y) \star [(x',y') + (x'',y'')] = (x,y) \star (x' + x'', y' + y'')$ = (x(x' + x''), x(y' + y'') + (x' + x'')y)= (xx' + xx'', xy' + xy'' + x'y + x''y)= (xx' + xx'', xy' + x'y + x'y' + x''y)= (xx', xy' + x'y) + (xx'', xy'' + x''y) $= [(x,y) \star (x', y')] + [(x,y) \star (x'', y'')].....(1pt)$ And here (A + +) is a commutative ring

And here $(A, +, \star)$ is a commutative ring.

d)