L'arbi Ben M'hidi University

Faculty: Exact Sciences, Natural and Life sciences **Department :** Mathematics and Computer Science. Level: Second year of Bachelor Mathematics

In: 14/01/2025 Duration: 1h30min

Mathematical logic exam

Exercise 1: (6 pts)

Are the following statements true or false? If true, give an example, otherwise correct it. 1^{*} Two sets are equipotent if there is a bijective application between them. 2^* A set has the cardinality of the continuum if it is equipotent with \mathbb{N} . 3^* A set is said to be denumerable if and only if it is equipotent with \mathbb{R} .

4* A set is said to be infinite if and only if it is equipotent with \mathbb{N}_n such that

$$\mathbb{N}_n = \{0, 1, ., n-1\}$$

Exercise 2: (4 pts)

The Fibonacci sequence is given by $\begin{cases} F_0 = 0\\ F_1 = 1\\ \forall n \in \mathbb{N} : F_{n+2} = F_{n+1} + F_n \end{cases}$

Let $\varphi = \frac{1+\sqrt{5}}{2}$ and $\varphi' = \frac{1-\sqrt{5}}{2}$ (φ is called the golden ratio). We have φ and φ' are solutions of the equation $x^2 - x - 1 = 0$

Question: By absurdity and well ordering proof show that for all $n \ge 1$ we have $F_n \le \varphi^{n-1}$.

Exercise 3: (4 pts)

1/Use the truth tables method to determine whether the following formula

$$(\rceil P \lor Q) \land (Q \Longrightarrow (\rceil R \land \rceil P)) \land (P \lor R)$$

is an antilogy. 2/ Let α be an antilogy and β any formula. Show that $\alpha \Longrightarrow \beta$ is a tautology.

Exercise 4: (3 pts)

Show that : $\forall n \in \mathbb{N}$; 7 divides $3^{2n+1} + 2^{n+2}$

Exercise 5: (3 pts)

Give a logical paradox and explain why it is a paradox (by giving the text, the question posed and the possible answers).

Solution

EX01:

 $1 \rightarrow \text{True}(0.75)$, Example (0.75)

 $2 \rightarrow \text{False}(0.75)$ Correction : A set has the cardinality of the continum if it is equipotent with $\mathbb{R}.(0.75)$

 $3 \rightarrow$ False(0.75) Correction: A set is said to be denumerable if and only if it is equipotent with \mathbb{N} . (0.75)

 $4 \rightarrow \text{False}(0.75)$ Correction: A set is said to be <u>finite</u> if and only if it is equipotent with \mathbb{N}_n (0.75)

EX02:

By

 $\begin{cases} F_0 = 0 \\ F_1 = 1 \\ \forall n \in \mathbb{N} : F_{n+2} = F_{n+1} + F_n \dots (*) \end{cases}$

By absurdity and well ordering proof showing that $\forall n \geq 1 : F_n \leq \varphi^{n-1}$.

Assume that it exits a set $C \neq \emptyset$, such that $C = \{n \in \mathbb{N}, F_n > \varphi^{n-1}\}$ (0.5)

We have $C \subset \mathbb{N}$, by well ordering principle $\exists n_0 \in C, n_0$ is the minimum of C.(it means that $\forall n \in C : n_0 \le n) \ (0.5)$

Then $F_{n_0} > \varphi^{n_0-1}$, in other part we have $F_1 \leq \varphi^0 = 1$, so $1 \notin C$ and $n_0 - 1 \notin C$ as a result $F_{n_0-1} \leq \varphi^{n_0-2} \dots (0.5)$

And $F_0 = 0 \le \varphi^{-1}$ is also true, so $F_{n_0-2} \le \varphi^{n_0-3}...(0.5)$

(*) we get
$$F_{n_0} = F_{n_0-1} + F_{n_0-2}....(0.25)$$

$$\implies F_{n_0} \le \varphi^{n_0 - 2} + \varphi^{n_0 - 3} \dots (0.25)$$

 $\implies F_{n_0} \le \varphi^{n_0 - 3}(\varphi + 1)...(0.25)$ [**] But φ is a solution for the equation $x^2 - x - 1 = 0$ so $\varphi^2 - \varphi - 1 = 0 \implies \varphi^2 = \varphi + 1.. (0.5) . [***]$ Remplace [***] in [**] we get $F_{n_0} \leq \varphi^{n_0-3}\varphi^2$ then $F_{n_0} \leq \varphi^{n_0-1}...(0.5)$ we have a contradiction then $C = \emptyset$ and $n \ge 1$ we have $F_n \le \varphi^{n-1} \dots (0.25)$ EX03:

	2001									
	P	Q	R]P]R	$]P \lor Q$	$]R \land]P$	$Q \Longrightarrow (\rceil R \land \rceil P)$	$P \vee R$	$(\exists P \lor Q) \land (Q \Longrightarrow (\exists R \land \exists P)) \land (A \land A \land $
	1	1	1	0	0	1	0	0	1	0
	1	1	0	0	1	1	0	0	1	0
	1	0	1	0	0	0	0	1	1	0
1/	1	0	0	0	1	0	0	1	1	0
	0	1	1	1	0	1	0	0	1	0
	0	1	0	1	1	1	1	1	0	0
	0	0	1	1	0	1	0	1	1	1
	0	0	0	1	1	1	1	1	0	0
T 1	·		1	- 1		. (0.05	``			

This formula is not antilogy (0.25)

```
\beta
                   \alpha \Longrightarrow \beta
\alpha
```

So in two cases $\alpha \Longrightarrow \beta$ is true, then $\alpha \Longrightarrow \beta$ is a tautology.....(0.75) 2/01 1 0 0 1

EX04:

Show that : $\forall n \in \mathbb{N}$; 7 divides $3^{2n+1} + 2^{n+2} \dots p(n)$ by recurrence proof *For n = 0; 7 divides $3^{0+1} + 2^{0+2} = 7$ is true...(0.5)

*Assume that p(n) is true and showing that p(n+1) is also true

p(n) is true means that $\exists k \in \mathbb{N} : 3^{2n+1} + 2^{n+2} = 7k...(0.5)...[*]$

For
$$n + 1: 3^{2n+3} + 2^{n+3} = 3^{2n+1} \times 3^2 + 2^{n+2} \times 2... (0.25)$$

$$= 3^{2n+1} \times 9 + 2^{n+2} \times 2... (0.25)$$

$$= 3^{2n+1} \times (7+2) + 2^{n+2} \times 2... (0.25)$$

$$= 3^{2n+1} \times 7 + (2^{n+2} + 3^{2n+1}) \times 2... (0.25)$$

$$= 3^{2n+1} \times 7 + (7k) \times 2... (0.25) \text{ by } [*]$$

$$= 7 (3^{2n+1} + 2k) \dots (0.25) \text{ but } 3^{2n+1} + 2k \in \mathbb{N} \text{ so we can put}$$

$$3^{2n+1} + 2k = k'$$
Then $3^{2n+3} + 2^{n+3} = 7k'.. (0.25)$ which means 7 divides $3^{2n+3} + 2^{n+3}$.and $p (n + 1)$ is true and by recurrence $p (n)$ is true.... (0.25)

$$EX05:$$
text (1)
question (1)
$$1(2^{n+1})$$

answer 1(0.5)answer 2 (0.5)