(durée : 1h.30mn).

1ére année Master (Chimie des matériaux).

Examen de: Chimie de coordination

Exercice 1......(06.00pts)

- 1- Donner le nom des composés suivants :
- $1- [Co(Br)(NH_3)_5]SO_4, 2- Na[PtCl_3(NH_3)], 3- [Cu(en)_2I(H_2O)](NO_3)_2; [Fe(CN)_5NO]^{2-}.$
- <u>2-</u> Pour chacun des complexes suivants, donner la formule, préciser la sphère externe de coordination, la denticité des coordinats et le nombre de coordination du métal ($Z_{Ni} = 28$, $Z_{Pl} = 78$): 1- ion tétrachloroferrate(III), 2- molécule diamminedicholoroplatine(II).
 - <u>3-</u> Justifier l'existence de K[PtCl₃(η^2 -C₂H₄)].

Exercice 2.....(06.00pts)

Le perchlorure de fer est utilisé dans le processus de fabrication des circuits imprimés.

- <u>1-</u> Quels sont les ions de fer et de cuivre présents dans les composés FeCl₃, FeCl₂ et CuCl₂?
- 2- Le chlore (Cl) ne donne qu'un seul ion stable. De quel ion s'agit-il ? Calculer

l'énergie d'orbitale 3s pour cet ion.

<u>3-</u> Calculer le rayon de cet ion.

Données: Z : Fe=26 ; Cu=29 ; Cl= 17, a₀= 0.53 Å

groupe	contribution des autres électrons							
de 1°e- étudié	n-2		niveau n-1	autres électrons du niveau n				niveaux sup
				1 s	sp	d	f	
1 s				0,3				
s et p	1		0,85		0,35	0	0	0
d	1		1		1	0,35		
f	1		1		1	1	0,35	
-	n	1	2	3	4	5	6	-
-	n*	1	2	3	3,7	4	4,2	

Exercice 3.....(08.00pts)

- **1-** On considère le complexe [CoCl₆]⁻³
- a- Sachant que le numéro atomique de Co est Z = 27 et que Cl⁻ est un ligand à champ faible, donner la structure électronique du complexe en représentant le diagramme d'énergie des orbitales **d** selon le modèle du champ cristallin. Déduire l'énergie de stabilisation en fonction de Δ .
- **b-** L'addition d'éthylènediamine (**en**), de formule H_2N - CH_2 - CH_2 - NH_2 , à une solution aqueuse de $[CoCl_6]^{-3}$, conduit à la formation de l'ion complexe $[CoCl_2(en)_2]^+$. Sachant que **en** est un ligand à champ fort, Calculer l'énergie de stabilisation par le champ cristallin (Escc) en fonction de Δ 0 en représentant le diagramme d'énergie des orbitales **d** selon le modèle du champ cristallin. En déduire les isomères existants.
 - **2-** Pour les deux complexes suivants : $1 : [FeCl_4]^-$; $2 : [MnCl(CN)_4(H_2O)]^{-2}$.
- **a-** Représenter le diagramme de répartition des électrons d selon le modèle du champ cristallin sachant que Cl- et H2O sont des ligands à champ faible et CN- un ligand à champ fort.
- **b-** Calculer l'énergie de stabilisation par le champ cristallin (Escc) en fonction de Δ pour les deux complexes.

<u>Données</u>: Fe : Z = 26; Mn : Z = 25