2nd Year Bachelor of Computer Science – 3rd Semester Saturday 18/01/2025 Duration : 1 H 30 mn

Graph Theory Exam

Exercise n°=1: (4 pts)

Let be the following graph G:

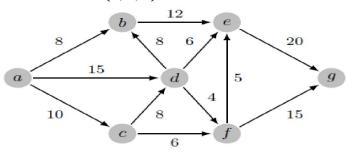
Determine (<u>iustifying your answer</u>) whether the graph G is a planar graph. (1 pt)

If yes,

- a. give its planar representation, (1 pt)
- b. determine the number of faces, (1 pt)
- c. and give the corresponding dual graph G^* . (1 pt)

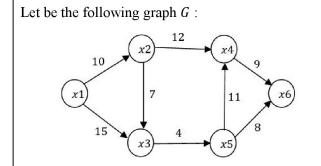
Exercise n°=2: (7 pts)

Consider the following weighted network G = (X, U, C):



• Using the Ford-Fulkerson algorithm, give <u>a maximum flow</u> for this transport network and calculate <u>a minimum cut</u>.

Exercise n°=3: (5 pts)



Determine a minimal weight path from vertex x1 to each of the other vertices of the graph G, indicating the different steps.

	Last name :	First name :	Group :	Mark (MCQ) :	4
--	-------------	--------------	---------	--------------	---

comprehension questions (MCQ): (4 pts)

Check the correct answer(s) in the following:

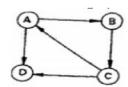
1) Let X be the adjacency matrix of a graph G with no self loops. The entries along the principal diagonal of X are:

I		all ones	
		all zeros	
		both zeros and ones	
		different	

2) The in-degree of a vertex in a directed graph is:

The number of vertices connected t	
	The number of edges leaving it
	The number of edges coming into it
	The sum of its neighbors degrees

3) Consider the graph shown in the figure below:



Which of the following is a valid strongly component?

	0	0.	
$\{A,C,D\}$			
$\{A,C,B\}$			
$\{A, D, B\}$			
$\{B,C,D\}$			\neg

4) A graph is considered complete if:

ı	i) it graph is considered complete it.		
		All its edges are collinear	
		All its vertices are adjacent to each other	
		It is composed of straight lines	
		It is oriented	

5) Chain length is :

5) Chain length is:	
	The number of edges that compose it
	The number of vertices that compose it
	The number of graphs that compose it
	The number of matrices that compose it

6) An elementary path can pass through the same arc several times:

True
False

7) In a graph G there is one and only one path between every pair of vertices then G is a:

	Path
	Walk
	Circuit
	Tree

8) A graph in which all nodes are of equal degree, is known as:

Multigraph
Non regular graph
Regular graph
Complete graph

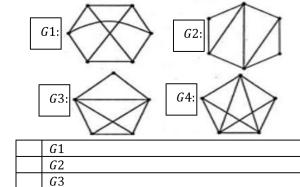
9) A vertex-edge matrix is composed of elements whose values can be:

0
1
-1
'True' ou 'False'

10) The maximum number of edges in a bipartite graph on 12 vertices is :

12
24
36
48

11) Which one of the following graphs is NOT planar?



G4

12) Let G be a simple connected planar graph with 13 vertices and 19 edges. Then, the number of faces in the planar embedding of the graph is:

6
8
9
13

13) If the graph is with triangle, then we apply Euler's property 1:

$m \le 6 \times n - 3$
$m \leq 3 \times n - 6$
$m \leq 2 \times n - 4$
$m \le 4 \times n - 2$

14) A graph is a tree if and only if:

Is planar
Contains a circuit
Is minimally
Is completely connected

15) The empty subgraph of a graph contains:

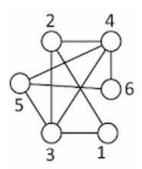
No vertices and no edges
No vertices but some edges
Some vertices but no edges
All the vertices but no edges

2nd Year Bachelor of Computer Science – 3rd Semester Saturday 18/01/2025
Duration: 1 H 30 mn

Graph Theory Exam

Exercise n°=1: (4 pts)

Let be the following graph G:

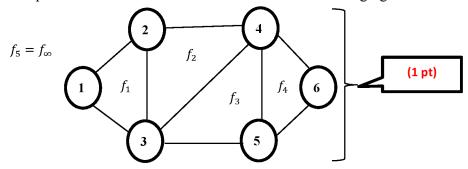


Determine (<u>justifying your answer</u>) whether the graph G is a planar graph. (1 pt)

If yes,

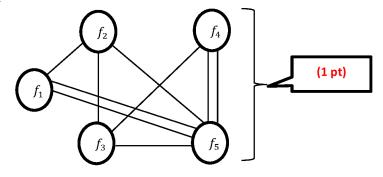
- a. give its planar representation, (1 pt)
- b. determine the number of faces, (1 pt)
- c. and give the corresponding dual graph G^* . (1 pt)

Yes, because it can be represented without intersection as shown in the following figure:



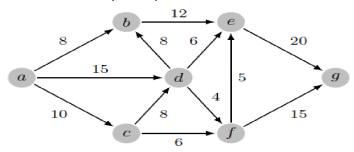
The graph has a triangle, so we apply Euler's property 1. We have : $m \le 3 \times n - 6$ $\frac{2 \times 2 + 3 \times 2 + 4 \times 2}{2} \le 3 \times 6 - 6 => 9 \le 12 => TRUE$ so the graph is planar. $\text{Let's apply Euler's formula : } n - m + f = 2 \rightarrow f = 2 - n + m$ f = 2 - 6 + 9 = 5 faces

The corresponding dual graph G^* :



Exercise n°=2: (7 pts)

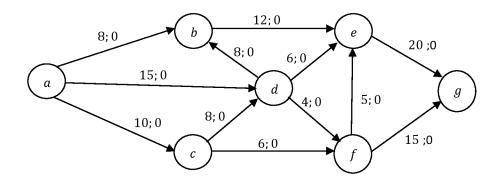
Consider the following weighted network G = (X, U, C):



• Using the Ford-Fulkerson algorithm, give <u>a maximum flow</u> for this transport network and calculate <u>a</u> <u>minimum cut</u>.

Application of the Ford-Fulkerson algorithm for finding the maximum flow (3.5 pts) Initialization:

$$k=0$$
 ; $\phi^k=0$; $A=\{\textbf{a}\}$

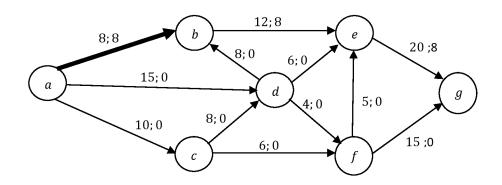


Iteration 1:

$$A = \{a, b, e, g\}$$

$$\varepsilon = min\{8 - 0, 12 - 0, 20 - 0\} = min\{8, 12, 20\} = 8$$

$$\varphi^{1} = \varphi^{0} + \varepsilon = 0 + 8 = 8$$

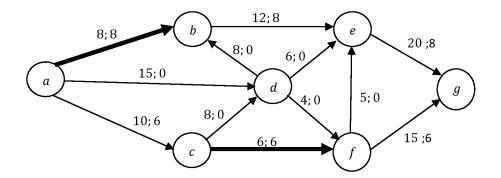


Iteration 2:

$$A = \{a, c, f, g\}$$

$$\varepsilon = min\{10 - 0, 6 - 0, 15 - 0\} = min\{10, 6, 15\} = 6$$

$$\varphi^2 = \varphi^1 + \varepsilon = 8 + 6 = 14$$

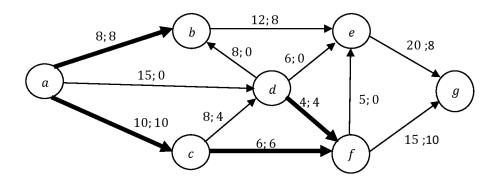


Iteration 3:

A = {a, c, d, f, g}

$$\varepsilon = \min\{10 - 6.8 - 0.4 - 0.15 - 6\} = \min\{4.8.4.9\} = 4$$

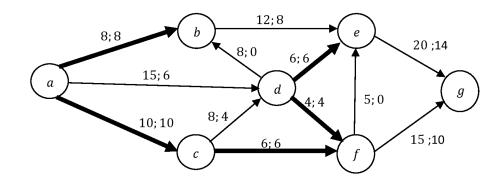
$$\varphi^3 = \varphi^2 + \varepsilon = 14 + 4 = 18$$



Iteration 4:

A =
$$\{a, d, e, g\}$$

 $\varepsilon = min\{15 - 0.6 - 0.20 - 8\} = min\{15.6.12\} = 6$
 $\varphi^4 = \varphi^3 + \varepsilon = 18 + 6 = 24$

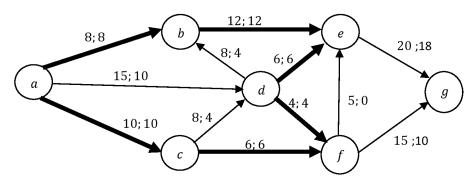


Iteration 5:

$$A = \{a, d, b, e, g\}$$

$$\varepsilon = min\{15 - 6.8 - 0.12 - 8.20 - 14\} = min\{9.8, 4.6\} = 4$$

$$\varphi^5 = \varphi^4 + \varepsilon = 24 + 4 = 28$$



Iteration 6:

 $A = \{a, d, b, STOP\}$ or $A = \{a, d, c, STOP\}$

We can no longer mark and g is not marked, THEN finished, the flow is maximum:

$$\varphi_{max} = \varphi^5 = 28$$

$$\varphi_{max} = \sum \left(\varphi(a, x) / x \in \Gamma_R^+(a) \right) = \varphi^5(a, b) + \varphi^5(a, d) + \varphi^5(a, c) = 8 + 10 + 10 = 28$$

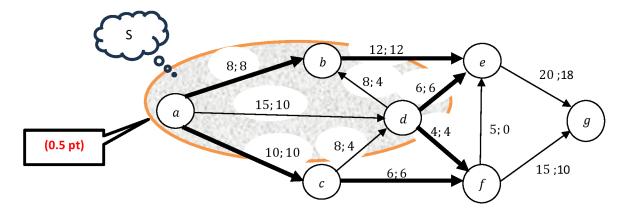
or

$$\varphi_{max} = \sum (\varphi(x,g)/x \in \Gamma_R^-(g)) = \varphi^5(e,g) + \varphi^5(f,g) = 18 + 10 = 28$$

Then:

$$\varphi_{max} = 28$$

The (a-g) - cut : (3.5 pts)



a) The arcs set of the (a - g) – cut is given by :

$$(a-g)-cut = \{(b,e),(d,e),(d,f),(a,c)\}$$
 (0.5 pt)

b) The (a - g) - cut is the partition of vertices :

$$C_p = S \cup P = \{a, b, d\} \cup \{c, e, f, g\}$$
 (0.5 pt)

c) The capacity of the (a - g) – cut is equal to :

$$C(C_p) = \sum_{\substack{x \in S \\ y \in P}} c(x, y) = c(b, e) + c(d, e) + c(d, f) + c(a, c) = 12 + 6 + 4 + 10 = 32$$
(0.5 pt)

- d) This cut C_P is not minimal because :
 - The arcs (b, e), (d, e), (d, f), (a, c) outcoming the cut are saturated.
 - The arc (c,d) incoming the cut with a flow $\varphi(c,d) = 4 \neq 0$, so this condition is *not* verified.
- e) C_P is not minimal So,

$$|\varphi_{max}| \le |\mathcal{C}(\mathcal{C}_p)|$$
 (0.5 pt) $28 \le 32$

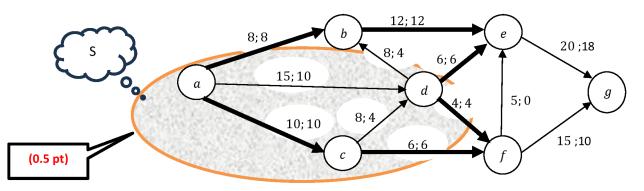
f) The net flow φ_{C_p} crossing the cut C_p is equal to :

$$\begin{vmatrix} \varphi_{C_p} & | = \varphi_{C_p}^+ & (S) - \varphi_{C_p}^- & (S) = \sum_{x \in S} \varphi(x, y) - \sum_{x \in P} \varphi(x, y) \\ | \varphi_{C_p} & | = (\varphi(b, e) + \varphi(d, e) + \varphi(d, f) + \varphi(a, c)) - \varphi(c, d) \end{vmatrix}$$

$$\begin{vmatrix} \varphi_{C_p} & | = (12 + 6 + 4 + 10) - 4 = 32 - 4 = 28 \end{vmatrix}$$
(0.5 pt)

OR

The (a-g) - cut : (3.5 pts)



g) The arcs set of the (a - g) – cut is given by :

$$(a-g)-cut = \{(a,b),(d,b),(d,e),(d,f),(c,f)\}$$
(0.5 pt)

h) The (a - g) - cut is the partition of vertices :

$$C_p = S \cup P = \{a, c, d\} \cup \{b, e, f, g\}$$
 (0.5 pt)

The capacity of the (a - g) – cut is equal to :

$$C(C_p) = \sum_{\substack{x \in S \\ y \in P}} c(x, y) = c(a, b) + c(d, b) + c(d, e) + c(d, f) + c(c, f) = 8 + 8 + 6 + 4 + 6 = 32$$
(0.5 pt)

- This cut C_P is *not minimal* because :
 - The arcs (a, b), (d, e), (d, f), (c, f) outcoming the cut are saturated but the arc (d, b) is not saturated, so this condition is *not* verified.

(0.5 pt)

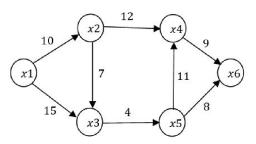
- No arcs incoming the cut with a flow $\varphi(x, y) = 0$, so this condition is *implicitly* verified.
- **k)** C_P is not minimal So,

$$|\varphi_{max}| \le |C(C_p)|$$
 (0.5 pt) $28 \le 32$

1) The net flow φ_{C_p} crossing the cut C_p is equal to :

$$\left| \begin{array}{c} \varphi_{C_p} \end{array} \right| = \varphi_{C_p}^+ \ (S) - \varphi_{C_p}^- \ (S) = \sum_{x \in S} \varphi(x, y) - \sum_{x \in P} \varphi(x, y) \\ \left| \varphi_{C_p} \right| = \left(\varphi(a, b) + \varphi(d, b) + \varphi(d, e) + \varphi(d, f) + \varphi(c, f) \right) - 0$$
 (0.5 pt)
$$\left| \varphi_{C_p} \right| = (8 + 4 + 6 + 4 + 6) - 0 = 28 - 0 = 28$$

Exercise n°=3: (5 pts)



Determine a minimal weight path from vertex x1 to each of the other vertices of the graph G, indicating the different steps.

				Som	mets			
Etapes (k)	D	1	2	3	4	5	6	
1	{ <i>x</i> 1}	0	<u>10</u>	15	+∞	+∞	+∞	1 pt
2	$\{x1, x2\}$	0	10	<u>15</u>	22	+∞	+∞	- pt
3	$\{x1, x2, x3\}$	0	10	15	22	<u>19</u>	$+\infty$	1 pt
4	$\{x1, x2, x3, x5\}$	0	10	15	<u>22</u>	19	27	1 pt
5	$\{x1, x2, x3, x5, x4\}$	0	10	15	22	19	<u>27</u>	1 pt
6	$\{x1, x2, x3, x5, x4, x6\}$	0	10	15	22	19	27	1 pt

comprehension questions (MCQ): (4 pts = 0.25 pt x 16)

Check the correct answer(s) in the following:

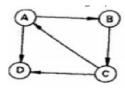
1) Let X be the adjacency matrix of a graph G with no self loops. The entries along the principal diagonal of X are:

	all ones
X	all zeros
	both zeros and ones
	different

2) The in-degree of a vertex in a directed graph is:

	The number of vertices connected to it
	The number of edges leaving it
X	The number of edges coming into it
	The sum of its neighbors degrees

3) Consider the graph shown in the figure below:



Which of the following is a valid strongly component?

	$\{A,C,D\}$
X	$\{A,C,B\}$
	$\{A, D, B\}$
	$\{B,C,D\}$

4) A graph is considered complete if:

	., if graph is constacted complete it
	All its edges are collinear
X	All its vertices are adjacent to each other
	It is composed of straight lines
	It is oriented

5) Chain length is:

•	o) Chain length is:
X	The number of edges that compose it
	The number of vertices that compose it
	The number of graphs that compose it
	The number of matrices that compose it

6) An elementary path can pass through the same arc several times:

	True
Х	False

7) In a graph G there is one and only one path between every pair of vertices then G is a:

	Path
	Walk
	Circuit
X	Tree

8) A graph in which all nodes are of equal degree, is known as:

	is into will tes .
	Multigraph
	Non regular graph
X	Regular graph
	Complete graph

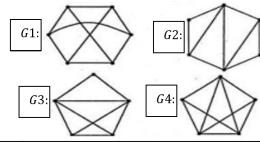
9) A vertex-edge matrix is composed of elements whose values can be:

X	0
X	1
	-1
	'True' ou 'False'

10) The maximum number of edges in a bipartite graph on 12 vertices is :

	12
	24
X	36
	48

11) Which one of the following graphs is NOT planar?



X	<i>G</i> 1
	<i>G</i> 2
	<i>G</i> 3
	<i>G</i> 4

12) Let G be a simple connected planar graph with 13 vertices and 19 edges. Then, the number of faces in the planar embedding of the graph is:

	6
X	8
	9
	13

13) If the graph is with triangle, then we apply Euler's property 1:

	$m \le 6 \times n - 3$
X	$m \leq 3 \times n - 6$
	$m \leq 2 \times n - 4$
	$m \leq 4 \times n - 2$

14) A graph is a tree if and only if:

	Is planar
	Contains a circuit
X	Is minimally
	Is completely connected

15) The empty subgraph of a graph contains:

X	No vertices and no edges
	No vertices but some edges
	Some vertices but no edges
	All the vertices but no edges