Larbi Ben Mh'idi University Oum el Boughi

Academic Year: 2024/2025 **Department of Computer Science** Second Year L.M.D-Computer Science **Module: Mathematical Logic Final Exam** First name group group Exercise N: 01 (10 points) Put a circle on the correct answer(s)? 1. the formula A is a. a literal; b. a clause; c. a logic variable **2.** the two following causes: ¬AVB *and* AVC are a. complementary clauses ; b. resolvent clauses c. empty clauses 3. The formula $\neg A VA$ is a b. valid : c. antilogy ; d. consistency; E. contingent a.. tautology ; **4.** The formula $\neg B \Rightarrow \neg A$ is a. the converse of $A \Rightarrow B$; b. the inverse of $A \Rightarrow B$; c. the contrapositive of $A \Rightarrow B$ <u>5</u> . the general inference rule applied on a. Two complementary clauses; b. two conjunctive clauses; c. literal and its negation **6.** a consistent formula can be a. tautology formula ; b. valid formula ; c. contingent formula 7. B ∧ C \models A \Rightarrow (B ∧ C) it is read a. B \wedge C is a logic consequence of A \Rightarrow (B \wedge C); b. A \Rightarrow (B \wedge C) is a logic consequence of B \wedge C 8_16 interpretations is the true number of a formula with a. 3 logic variables; b. 4 logic variables; c 2 logic variables; d 5 logic variables **9** The formula $A \Leftrightarrow (B \land C)$ is logically equivalent to a. $((A \Rightarrow (B \land C)) \land ((B \land C) \Rightarrow A)))$; b $((A \Rightarrow (B \land C)) \lor ((B \land C) \Rightarrow A)))$; c $((\neg A \lor (B \land C)) \land ((\neg B \lor A)))$ $\neg C(V(A)))$ 10. B \wedge C \models A \Rightarrow (B \wedge C) if

a.
$$((A\Rightarrow (B \land C)) \land ((B \land C)\Rightarrow A)))$$
; b $((A\Rightarrow (B \land C)) \lor ((B \land C)\Rightarrow A)))$; c $((\neg AV(B \land C)) \land ((\neg BV \neg C)\lor A)))$

a .Each model of B \wedge C is a model of A \Rightarrow (B \wedge C); b. Each model of A \Rightarrow (B \wedge C) is a model of B \wedge C

Exercise N: 03(05 points)

F is a logic function with eight interpretations, F is true when the disjunction between two logic variables is true.

- 1. Construct the truth table of F?
- 2. Give The CNF and the DNF of F?
- 3. Determine whether F is a tautology, satisfiable, unsatisfiable?

.The tru	th table
2. CNF	and DNF
3.	Tautology ,satisfiable, unsatisfiable (without justification)
Evercica	e N : 02(05 points)
LACICISC	: N : 02(03 points)
Wo dof	the Sheffer connector, denoted by " " (Sheffer bar), which is the NAND (not and), by: $p q = \neg (p \land q)$
we den	the the sheller connector, denoted by \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1.	Construct the truth table for the formula (p q).
1.	
2.	Construct the truth table for the formula $((p q) (p q))$.
_	
3.	Express the connectors \neg , V, and \rightarrow using the Sheffer bar.