exam correction of Physics 2

Part One (8pts)

In this part, the questions are questions that have several answers

Question 1

Let q and q' be two point charges separated by a distance d,

 $\vec{F}_{q/q'}$ Applied by q to q':

 \boxdot The force of electric attraction if q and q^\prime are different in sign

 \Box An electrical repulsion force when q and q^\prime are different in sign

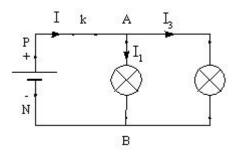
 $\ensuremath{\boxdot}$ An electrical repulsive force when q and q' are negative

 $\hfill\square$ An electric force of attraction when q and q' are positive

 \Box none of the above

Question 2

According to the following figure, determine the equation for the electric current at node A


 \Box | + |₁ + |₃ = 0

 \bigvee | -|₁ - |₃ = 0

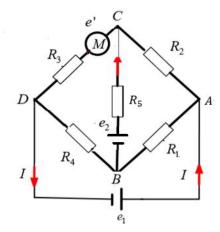
 $\Box - I - I_1 - I_3 = 0$

 \Box | = |₁ - |₃

Question 3

The unit of electrostatic field is:

 $\boxtimes N/C$


 $\square V/m$

🗆 Joule

 \Box none of the above

Question 4

We have the following network, what are the number of nodes and meshes:

- 🗆 6 knots
- ☑ 4 knots
- ☑ 3 meshes
- \Box 2 meshes

Question 5

Kirchhoff's second law is:

- $\ensuremath{\boxdot}$ Law of conservation of energy
- 🗹 mesh laws
- \Box Law of conservation of charge

□ law of knots

 $\boldsymbol{\boxtimes} \sum_{k=1}^{n} e_k = \sum_{k=1}^{n} R_k I_k$

 \Box none of the above

Question 6

Properties of a balanced electric conductor:

 $\ensuremath{\boxdot}$ the charge in the conductor zero

 $\ensuremath{\boxdot}$ The electrical potential is constant at every point

□ The electrostatic field inside the conductor is non-zero

☑ Electrical charges accumulate on a surface of conductor

 \Box none of the above

Question 7

The similarity between the laws of nature is evident in the similarity between Coulomb's law and the law of universal gravitation, which is represented in:

☑ The force in each of them is directly proportional to the product of the physical quantity

 $\ensuremath{\boxdot}$ The force in each is inversely proportional to the distance between them

 $\hfill\square$ The force in each of them is only an attractive force

 \Box none of the above

Part Two (12 pts)

In this part, the questions are questions that can only have one answer

Question 1

electrostatic is:

□ The branch of physics that studies the phenomena resulting from charges in Motion condition

 \Box The branch of physics that studies electrons;

☑ The branch of physics that studies phenomena resulting from charges immobile electric;

 \Box none of the above

Question 2

The proton exerts the force of electrostatic attraction on:

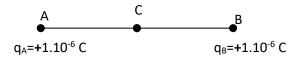
 \Box the light;

☑ elect	trons
---------	-------

 \Box neutron;

 \Box none of the above

Question 3


What is the value of the electric field at point C in the middle of segment AB? Points A and B are 2m apart

🗹 zero

 \Box It is equal to 180000~N/C and its direction is from C to A

 \Box It is equal to $180000 \mbox{ N/C}$ and its direction is from A to C

 \Box none of the above

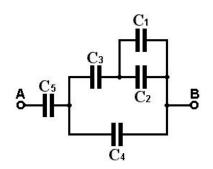
Question 4

Two charges with values of +1mC and -2mC respectively are 50cm apart. What are the electrical forces between them?

+ 1 mC
$$\rightarrow$$
 F F \rightarrow - 2 mC \rightarrow F F \rightarrow F \rightarrow F \rightarrow F \rightarrow F = - 72.10³ N

Name

group


$$F = 72.10^{3} \text{ N}$$

$$F = 72.10^{-1} \text{ N}$$

Question 5

What is the equivalent capacitance value for the following installation?

$\textbf{C}_{i} {=} \textbf{I} \mu \textbf{F} \text{ ; } \textbf{C}_{2} {=} \textbf{2} \mu \textbf{F} \text{ ; } \textbf{C}_{3} {=} \textbf{6} \mu \textbf{F} \text{ ; } \textbf{C}_{4} {=} \textbf{4} \mu \textbf{F} \text{ ; } \textbf{C}_{5} {=} \textbf{12} \mu \textbf{F}$

 $\Box 8 \mu F$

 $\Box 6 \mu F$

☑ 4µF

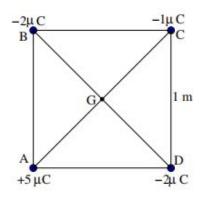
 \Box none of the above

Question 6

The electric potential resulting from a point charge q at a point M at a distance d is given by the following relationship:

 $\Box V = Kq/d^2$

 $\boxdot V = Kq/d$


 $\Box V = Kq/d\vec{u}$

 \Box none of the above

Question 7

We have 4 point electric charges located at vertices

A square of side length is 1 m. Point G is the intersection of the diagonals of square ABCD

The electrical potential at point G is equal to:

🗆 108000 V

□ -108000 V

🗹 zero

 \Box none of the above

Question 8

We have a voltage generator whose driving force feeds an external resistance R, if the intensity of the current passing through the resistance

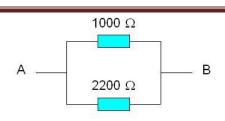
How much is the resistance value?

 $\square R = 200 \Omega$ $\square R = 20 \Omega$ $\square R = 500 \Omega$ $\square R = 50 \Omega$

 \square none of the above

Question 9

Let q and q' be two point charges separated by a distance d.


The expression for the intensity of the electrostatic force with which q acts on q' is:

 $\boxtimes K \left| qq' \right| / d^2$

 $\Box |Kqq'/d|$

 $\Box K |qq'|/d$

 \Box none of the above

Question 11

A good conductor of electricity is an element:

- \Box It does not have any free electrons
- \Box It contains a small number of free electrons
- $\ensuremath{\boxdot}$ It contains a large number of free electrons
- \Box none of the above

Question 10

The equivalent resistance between points A and B

Its value:

 \boxdot Its value is less than $1000~\Omega$

 \Box Its value is greater than 2200 Ω

 \Box confined between 1000 Ω and 2200 Ω

 \Box none of the above

Question 12

Derive the expression for the electric field ray from the following expression for the electric potential:

 $\Box \vec{E} = 18xz\vec{i} + 2x\vec{j} + 12\vec{k}$ $\Box \vec{E} = 18x^2z\vec{i} + 2y\vec{j} + 12\vec{k}$ $\Box \vec{E} = 18x^3\vec{i} + 2x\vec{j} + 12\vec{k}$

 \boxdot none of the above

Good luck