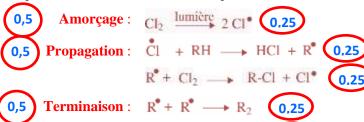
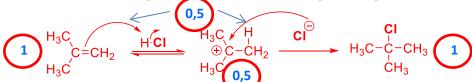
Nom:.....

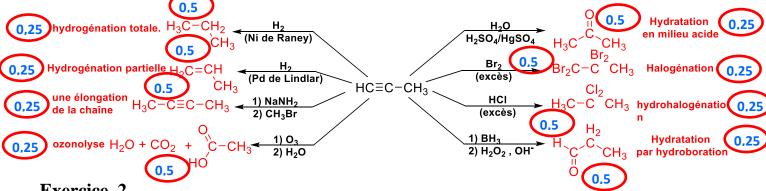

Groupe :.....

2023 / 2024

Controle de Chimie Organique II

Exercice 1


L'halogénation d'un alcane par Cl₂ répond à un mécanisme radicalaire en chaîne initié par l'absorption de photons. Donner le mécanisme à partir d'un alcane de formule générale RH.

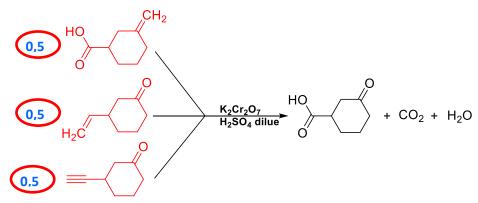

0,5 Terminaison:
$$R^{\bullet} + R^{\bullet} \longrightarrow R_2$$
 0,25 $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$ 0,25 $R^{\bullet} + Cl^{\bullet}$ RCl 0,25

2. On fait réagir du chlorure d'hydrogène (HCl) sur le méthylpropène. Donner le mécanisme et la formule du produit majoritaire.

Le proton \mathbf{H}^+ d'un acide fort peut réagir avec les électrons π d'une double liaison $\mathbf{C}=\mathbf{C}$ pour engendrer un carbocation (un intermédiaire réactionnel) qui réagit alors avec le nucléophile Cl⁻ présent dans le milieu.

3. Donner la formule du produit majoritaire obtenu par action du propyne sur chacun des réactifs suivants. et le nom de Chaque réaction

Exercice 2


1. Le (3R, 4S)-3-bromo-4-méthylhexane (A) est traité par KOH dans l'éthanol à chaud. On obtient majoritairement (B) et minoritairement (C).

Cette élimination est de type E2. Écrire le mécanisme à l'aide d'une représentation de Cram et déterminer la structure (configuration) du produit (B).

2. Identifiez les composés intervenant dans les enchaînements de réactions suivants, représentés par les lettres A, B, C, D, E.

Exercice 3

Complétez la réaction suivante

3 Possibilites

Bonne Chance