
 People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Oum El Bouaghi

Faculty of Exact Sciences and Natural and Life Sciences

Department of Mathematics and Computer Sciences

Course handout

Algorithmic methods

Level: Master 1 in Computer Sciences – option: distributed architectures

Dr. Zakaria Laboudi

Preface

This document is a course material concerning the subject entitled Algorithmic Methods,

taught in the Department of Mathematics and Computer Sciences at University of Oum

El Bouaghi and intended for students in the first year of the Master's cycle – option:

Distributed architectures. This subject follows the courses of Algorithms and data

structures, taught in the first and second years of the license cycle.

This course aims to present various fundamental algorithmic methods for solving many

typical problems. Indeed, the resolution of problems can in many times be done using

general outlines called paradigms which have the advantage of being applicable to a large

number of situations. Among these methods, this course focuses on famous principles of

greedy methods, divide and conquer algorithms, dynamic programming, backtracking

algorithms, probabilistic methods and approximation algorithms. The objective is to

give an overview of these paradigms in as simple and clear a manner as possible while

exposing their theoretical foundations and elements as well as how to apply them to the

resolution of various typical problems.

In order to achieve the above-stated objective, several efforts have been made to approach

this work in different aspects by synthetizing relevant information based on various

sources (books, course notes, websites, etc.) while respecting the official program set by

the Ministry of Higher Education and Scientific Research. Nevertheless, we are aware that

this work remains partial, truncated and not exhaustive. This is why we try to ensure a

permanent update so as to enrich its content. Thus, we would be grateful if readers would

point out any errors or provide us suggestions in this regard.

Oum El Bouaghi, June 2023

Dr. Zakaria Laboudi

i

Table of contents

Chapter I : Greedy methods

1. Optimization problems .. 1

 1.1. Definition .. 1

 1.2. Methods for solving optimization problems ... 1

2. Overview on greedy algorithms ... 2

 2.1. Principle of the greedy method .. 2

 2.2. General scheme .. 2

 2.3. Elements of the greedy strategy ... 4

3. Classic examples ... 5

 3.1. Minimum coin change problem ... 5

 3.2. Minimum spanning tree in a graph.. 6

 3.2.1. Prim's algorithm.. 7

 3.2.2. Kruskal's algorithm .. 8

 3.3. The 0/1 knapsack problem .. 9

4. Implication of matroid theory in greedy methods .. 10

 4.1. Matroids ... 10

 4.2. Greedy algorithms based on a weighted matroid .. 11

 4.3. Typical examples .. 12

 4.3.1. Scheduling on a machine ... 12

 4.3.2. Vehicle rental problem .. 13

5. Advantages and drawbacks of greedy methods .. 14

Chapter II : divide-and-conquer method

1. Overview on the divide-and-conquer method ... 16

 1.1. Principle of the divide-and-conquer method ... 16

 1.2. Strategy of the divide-and-conquer method... 16

 1.3. General scheme .. 17

2. Analysis of divide-and-conquer algorithms .. 18

 2.1. General form of recursive formulas for time complexity 18

 2.2. The Master-theorem .. 19

3. Divide-and-conquer algorithms vs greedy algorithms .. 19

4. Classic examples .. 20

 4.1. Binary search vs sequential search in an array ... 20

 4.2. Quick sort .. 21

 4.3. Merge sort ... 23

 4.4. Strassen's algorithm for matrix multiplication ... 25

5. Advantages and drawbacks of the divide-and-conquer method 27

ii

Chapter III : Dynamic programming

1. Overview on dynamic programming ... 28

 1.1. Dynamic programming principle ... 28

 1.2. When and how to use dynamic programming ... 28

 1.3. Dynamic programming strategy ... 29

 1.4. General scheme .. 29

2. Dynamic programming vs divide-and-conquer paradigm .. 32

3. Dynamic programming vs greedy algorithms ... 33

4. Classic examples .. 34

 4.1. Calculation of shortest paths in a graph (Floyd-Warshall algorithm) 34

 4.2. Calculation of the binomial coefficient ... 35

 4.3. Wooden planks cutting problem .. 37

 4.4. Maximum path sum in a pyramid of numbers .. 39

5. Advantages and drawbacks of dynamic programming .. 41

Chapter IV : Backtracking

1. Constraints satisfaction problems .. 42

2. Overview on the backtracking method ... 42

 1.1. Principle of the backtracking method ... 42

 1.2. General scheme .. 44

3. Backtracking vs dynamic programming .. 45

4. Classic examples ... 46

 4.1. N-Queens problem .. 46

 4.2. Graph coloring problem ... 48

 4.3. Modified knapsack problem (inspired from the original formulation) 49

 4.4. Subset-sum problem .. 51

5. Improving the basic scheme of backtracking algorithms .. 52

 5.1. Anticipation .. 53

 5.2. Heuristics ... 53

6. Advantages and drawbacks of the backtracking method ... 54

Chapter V : Probabilistic methods

1. Deterministic algorithms vs probabilistic algorithms .. 55

2. Random and pseudo-random number generation ... 56

 2.1. Uniform distribution of numbers .. 56

 2.2. Algorithmic pseudo-random number generators .. 56

 2.3. Examples of pseudo-random number generators ... 57

 2.3.1. The Von Neumann method ... 57

 2.3.2. Fibbonacci-based method ... 58

 2.3.3. The congruent linear method ... 58

iii

 2.4. Interests of algorithmic sources ... 59

 2.5. Fields of application of pseudo-random numbers .. 59

3. Categories of probabilistic algorithms ... 60

 3.1. Numerical algorithms .. 60

 3.2. Sherwood's algorithms .. 61

 3.3. Monte Carlo algorithms ... 62

 3.4. Las Vegas Algorithms ... 63

4. Advantages and drawbacks of randomized algorithms ... 65

Chapter VI : Approximation algorithms

1. Solving NP-complete optimization problems .. 66

2. Overview on approximation algorithms .. 67

 2.1. Basic idea of approximation algorithms ... 67

 2.2. Notations ... 67

 2.3. Performance ratio (approximation factor) ... 68

 2.4. Approximation schemes ... 69

 2.5. Classification of approximation algorithms ... 69

 2.6. Hardness of approximation .. 70

3. Classic examples ... 71

 3.1. Graph-coloring problem ... 71

 3.2. Traveling salesman problem ... 72

 3.2.1. Approximation algorithm for the determination of Hamilton cycles 72

 3.2.2. Non-approximation results in the traveling salesman problem 73

 3.3. Vertex cover problem .. 74

 3.4. Bin packing problem ... 76

 3.4.1. Approximation algorithms for the online version of the problem 77

 3.4.2. Approximation algorithms for the offline version of the problem 78

 3.5. 0/1 knapsack problem .. 79

4. Advantages and drawbacks of approximation algorithms ... 80

Exercices

Exercises set 1 ... 81

Exercises set 2 ... 83

Exercises set 3 .. 85

Exercises set 4 .. 87

Exercises set 5 .. 89

Exercises set 6 .. 91

 Bibliography

References ... 93

1

Chapter I: Greedy methods

Objective:

This chapter aims to present the paradigm of greedy methods and to show some

of their application aspects to solve certain typical examples. This chapter also

discusses some elements of the greedy strategy as well as the theoretical

underpinnings of this problem-solving paradigm.

1. Optimization problems

1.1. Definition

An optimization problem is characterized by a non-empty set of admissible solutions X

and an objective function f (also called cost function) which associates to each solution

𝑠 ∈ 𝑋 a value f (s). Solving an optimization problem consists in finding a solution 𝑠∗ ∈ 𝑋

which optimizes (i.e. which maximizes or minimizes) the value of cost function f. In this

case, solution 𝑠∗ is called optimal solution. In some cases, the optimum is not unique, but

rather a set of solutions optimizing the desired objective.

1.2. Methods for solving optimization problems

Generally, methods for solving optimization problems are divided into two main families:

 Exact methods: they allow finding the optimal solutions. However, time

complexity often increases exponentially with the growth of the solutions space

size; this makes this type of resolution unsuitable for large problem instances.

 Approximate methods: they do not necessarily allow obtaining optimal solutions

for a given problem but rather to seeking solutions close to the optimum within a

reasonable execution time. They belong to two subfamilies:

– Methods without guarantee: they build solutions at a lower cost without

any guarantee of their quality, hoping that they will perform well. We

distinguish two types of solving-methods: heuristics, which are used in

solving specific problems and meta-heuristics, which designate a general

framework for solving several classes of optimization problems.

– Methods with guarantee: they allow building solutions whose quality is

guaranteed at a lower cost: approximation algorithms (see chapter 6).

Chapter 01 Greedy methods

2

2. Overview on greedy algorithms

2.1. Principle of the greedy method

In many situations, solving an optimization problem involves building a solution gradually

such that at each step, a certain number of choices are made. In other words, starting from

an incomplete solution, the resolution process works to complete it step by step, where at

each step, we deal with some of the variables over which we no longer return (i.e. by

making definitive choices). In this way, the greedy principle builds a solution in an

incremental manner where at each step, the most promising direction (i.e. the choice which

seems the best at that time) is taken by following very simple rules. At each step, only one

datum is considered without worrying about the consequences in the future, and without

going back. Thus, this principle consists in making a locally optimal choice in the hope that

it will lead to the globally optimal solution. By doing so, a local choice leads to an analogous

sub-problem of smaller size.

Although a local choice seems the best in the short term, it nevertheless does not always

lead to a globally optimal solution. In other words, local optimality does not necessarily

lead to global optimality. Consequently, a greedy method generates a solution according to

two possible scenarios. In the case where the short-term view always leads to an optimal

solution – and this is the ideal situation, one refers to exact greedy algorithms. Otherwise,

one refers to heuristic greedy algorithms which only lead to sub-optimal solutions; they

are used in the lack of an efficient exact algorithm. More generally, if we consider the search

for a solution to a given problem as an exploration within a choice tree, the greedy method

builds one and only one branch of the tree which, in the end, may correspond or not to an

optimal solution. A greedy method never calls itself into question and moves as quickly as

possible towards a solution. Blinded by its excessive appetite, the greedy principle does not

guarantee arriving at an optimal solution, but it provides a result quickly.

2.2. General scheme

A greedy algorithm aims to find the best solution to an optimization problem, as much as

the adopted strategy allows it. Each solution s is constructed using the elements of a finite

set E according to different ways that depend on the problem to be solved (e.g. subset of

E, permutation of elements of E, etc.). The algorithm maintains a set of successful and

rejected candidates. The evaluation of the quality of each solution s is made according to

an objective function f (s).

Chapter 01 Greedy methods

3

The pseudo-code below presents the general scheme of the greedy method. It is based on

a local criterion for selecting the elements of Set E to build a potentially optimal solution.

To do so, it manipulates a set of abstract methods as follows:

- initialize: it builds the initial partial solution by choosing some elements from E.

- select: it selects the current best element of Set E with respect to the greedy

criterion.

- isComplete: it checks whether a partial solution sol is a complete solution without

taking into account the optimality aspect.

- canAdd: it checks whether a given element e can be added to a partial solution sol

so that the result still remains a partial solution.

- add: it adds an element e from Set E to a partial solution sol.

Input : set E of the elements of the solution

Output : solution Sol

Begin

Cand.initialize (E) ; // initialize object Cand using the candidates of set E

Sol.initialize (Cand) ; // initialize object Sol using certain initial elements of Cand

While (not Sol.isComplete () AND Cand.candidateExist ()) do

 e ← Cand.select () ; // select element e according to the greedy criterion

 If (Sol.canAdd (e)) then

 Sol.add (e) ; //add element e to the partial solution Sol

 End if

 If (certain conditions that depend on the problem-solving) then

 Cand.remove (e) ; //remove e from Cand in order to be processed once

 End if

End while

Return Sol ;

End

As in any other general scheme, the scheme presented above shows advantages and

drawbacks. Indeed, in some cases, it is even simpler. For example, when the solution

sought is a permutation, in general the algorithm may be reduced to a sorting task

according to the greedy criterion. In other cases, the solutions are a bit more complicated

and therefore schemes that are more sophisticated are required.

Chapter 01 Greedy methods

4

2.3. Elements of the greedy strategy (proof of optimality)

A greedy algorithm produces a solution after making a sequence of choices, where at each

decision point, it retains the choice that seems best at that time. Even so, by proceeding in

this way, the algorithm does not always succeed in determining the optimal solution. There

are two properties such that when they are checked, the problem-solving lends itself to a

greedy strategy: the greedy choice property and the optimal substructure property.

(a) Greedy choice property: there always exists an optimal solution constructed by

making a locally optimal first choice (a first element). In general, we demonstrate

that any optimal solution contains or starts with this first greedy choice.

Figure 1.1. Greedy choice property.

(b) Optimal substructure property: every optimal solution contains an optimal

substructure. A greedy algorithm makes a locally optimal choice and then solves the

sub-problems that arise. Thus, the solving-problem progresses downwards by

making successive greedy choices that iteratively reduce each instance of the

problem to a smaller instance. As a result, once property (a) is proven, the optimal

solution is determined by showing that it consists in the combination of the greedy

first choice with an optimal solution of the underlying sub-problem.

Figure 1.2. Optimal substructure property.

Chapter 01 Greedy methods

5

3. Classic examples

Now, we present typical cases of greedy methods applications. Thus, we consider a set of

typical problems whose resolution helps deal with other problems either by a direct

projection or by a partial adaptation.

3.1. Minimum coin change problem

This problem is formulated as designing an algorithm to give change to a customer with

as few coins as possible. More precisely, given an amount to be paid and an amount given

by the customer; it is asked to find the smallest combination of coins that makes up the

difference. One possible solution to this problem is to use a greedy strategy as follows:

1. Sort the coins in descending order of their values.

2. For each type of coin, if the value of this coin is lower than or equal to the

difference between the amount to be paid and the amount given by the customer,

add a coin of this type to the solution and subtract its value from the difference.

3. Repeat from step 2 until the difference becomes zero.

 Problem formalization

– Input: an amount M to be returned using a currency system S = (p1, p2, …, pn) in

which each type of coin pi is characterized by a value xi. For example, let consider

the currency system S = (p1, p2, p3, p4) whose values xi = 1..4 are (5 DZD, 10 DZD,

50 DZD,100 DZD).

– Solution: a solution consists in calculating the numbers of coins to be returned to

the customer, denoted by ki = 1..n, according to the coin types pi = 1..n ∈ S,

respectively. We assume that for each value xi, the number of coins is unbounded.

– Constraint: sum of the returned coins must be equal to M; M = ∑ ki × p
i

 n

 i = 1
.

– Objective function: minimize the number of coins returned: ∑ ki
 n
 i = 1 .

 Example

We want to return an amount M to a customer with a minimum number of coins according

to the following hypotheses.

M = 80.70 DZD.

S = {p1 = 50 DZD, p2 = 20 DZD, p3 = 10 DZD, p4 = 5 DZD, p5 = 50 c, p6 = 20 c, p7

= 10 c}

Solution: Sol = 1 × 50 DZD + 1 × 20 DZD + 1 × 10 DZD + 1 × 50 𝑐 + 1 × 20 𝑐 where:

ki = 1..7 = (1, 1, 1, 0, 1, 1, 0) and therefore ∑ ki
 n
 i = 1 = 5 coins in total.

Chapter 01 Greedy methods

6

The greedy algorithm for this example goes through the following steps:

– Take coin pi with the largest value xi ≤ 80.70. Therefore, the algorithm chooses p1

whose value x1 = 50 DZD so that the rest becomes 30.70.

– Likewise, take coin pi with the largest value xi ≤ 30.70. Therefore, the algorithm

chooses p2 whose value x2 = 20 DZD so that the rest becomes 10.70.

– And so on.

However, this greedy strategy does not guarantee optimality; let consider the following

example:

M = 80 DZD.

S = {p1 = 50 DZD, p2 = 40 DZD, p3 = 10 DZD}

The adopted strategy produces solution Sol = 1 × 50 DZD + 3 × 10 DZD where:

ki = 1..3 = (1, 0, 3) and thus ∑ ki
 n
 i = 1 = 4 coins in total.

An optimal solution could be solopt = 2 × 40 DZD where:

ki = 1..3 = (0, 2, 0) thus ∑ ki
 n
 i = 1 = 2 coins in total.

3.2. Minimum spanning tree in a graph

The minimum spanning tree problem is a well-known problem in graph theory. It consists

in finding the spanning tree of an undirected and weighted graph whose total weight is the

smallest possible. Figure 1.3 represents an illustrative example of an undirected and

weighted graph.

Figure 1.3. A typical undirected and weighted graph.

A spanning tree of a graph is a sub-graph which is a tree (i.e. a connected and acyclic graph)

covering all the vertices of the initial graph. To find the minimum spanning tree of a given

graph, there are two well-known greedy algorithms: Prim's algorithm and Kruskal's

algorithm.

Chapter 01 Greedy methods

7

3.2.1. Prim's algorithm

Prim's algorithm is guided by the following principle:

1. Pick an arbitrary vertex from the graph and add it to the spanning tree.

2. Find the minimum-weight edge that connects a vertex in the spanning tree to a

vertex that is not yet in the spanning tree, and add it to the spanning tree.

3. Repeat from step 2 until all vertices of the graph are in the spanning tree.

The result of running this algorithm on the previous example is illustrated in Figure 1.4.

Figure 1.4. The resulting minimum spanning tree using Prim's algorithm.

The pseudo-code below describes the steps of Prim's algorithm.

Prim's algorithm

Input: G = (X, E) a connected graph with positive edge weighting

Output: T = (A, E') a spanning tree of minimum weight

A : Set of marked vertices

E' : Set of tree edges

Begin

Initialize E' to the empty set ;

Arbitrarily mark a vertex x such that A = {x} ;

While (there is an unmarked vertex adjacent to a marked vertex) do

Select an unmarked vertex y adjacent to a marked vertex x such that (x, y)

is the smallest weight outgoing edge ;

E' ← E' U {(x, y)} ;

Mark y ; // A ← A U {y}

End while

Return T = (A, E') ;

End

Chapter 01 Greedy methods

8

The idea of Prim's algorithm is based on the fact that at each step we choose the edge of

minimum weight which connects a vertex from the spanning tree to a vertex which is not

yet in the spanning tree. This edge is therefore necessarily an edge of the minimum

spanning tree. By gradually adding these minimum-weight edges to the spanning tree, one

finally builds the complete minimum-weight spanning tree.

3.2.2. Kruskal's algorithm

Kruskal's algorithm is another classic algorithm for solving the minimum spanning tree

problem in an undirected and weighted graph. It consists of the following steps:

1. Sort all edges of the graph in ascending order of weight.

2. Loop through the sorted edges in order, and add each edge to the spanning tree if

it does not lead to generating a cycle.

3. Repeat from step 2 until all edges of the graph have been traversed.

The result of running this algorithm on the previous example is illustrated in Figure 1.5.

Figure 1.5. The resulting minimum spanning tree using Kruskal's algorithm.

The pseudo-code below describes the steps of Kruskal's algorithm.

Kruskal's algorithm

Input: G = (X, E) a connected graph with positive edge weighting

Output: T = (X, E') a spanning tree of minimum weight

Begin

sort the edges of G in ascending order of weight; // we note them as [e1, …, em]

Initialize E' to the empty set ;

For i ← 1 to m do

If (E' ∪ {ei} does not contain cycles) then

E' ← E' ∪ {ei} ;

End if

End for

Return T = (X, E') ;

End

Chapter 01 Greedy methods

9

The idea of Kruskal's algorithm is based on the fact that at each step, we add to the

spanning tree the edge of minimum weight which does not create a cycle. And as the edges

of minimum weight are added gradually to the spanning tree, we finally build the complete

minimum spanning tree.

In terms of time complexity, Kruskal's algorithm is slightly more efficient than Prim's in

some cases, because it does not require calculating distances between vertices at each step.

However, it requires sorting all the edges of the graph, which can be computationally

expensive for large graphs.

3.3. The 0/1 knapsack problem

Informally, the knapsack problem is described as a choice among n items, those which are

the most profitable, knowing that the sack has a limited capacity C. In its simplest version,

namely the one-dimensional binary knapsack problem (0/1), it is asked to select a subset

of items in order to maximize the total profit knowing that each item ti is characterized by

a weight wi and a profit pi. One way to solve that problem is to use a greedy strategy as

follows:

1. Sort the items in descending order of the values of ratio pi / wi.

2. For each item ti, check whether the remaining capacity of the sack is still sufficient.

If so, item ti is chosen and put in the sack. Otherwise, the algorithm moves on to

the next item (i.e. item ti+1).

 Problem formulation

– Input: a set of n items T = {t1, t2, …, tn / each item ti has a weight wi and a profit

pi} and a sack of capacity C.

– Solution: a solution consists in selecting a subset of items from set T. The solution

is encoded as a vector x = (x1, x2,, xn) such that xi ∈ {0, 1} to indicate the

absence / presence of the ith item.

– Constraint: the sum of the weights of the chosen items must not exceed sack

capacity C: ∑ wixi ≤ C n
 i = 1

– Objective function: maximize the total profit: f (x) = ∑ p
i
xi

 n
 i = 1 .

 Example

Consider a sack of capacity C = 10 and a set of 4 items whose weights and profits are given

in the table below.

Chapter 01 Greedy methods

10

Items (ti) t1 t2 t3 t4

Profits (wi) 8 10 2.5 3

Weights (pi) 6 7 2 2

The greedy algorithm for this example goes through the following steps:

– By sorting the items in descending order of the values of ratio pi / wi, we obtain:

Items (ti) t4 t2 t1 t3

Profits (wi) 3 10 8 2.5

Weights (pi) 2 7 6 2

Ratio (pi /wi) 1.5 1.42 1.33 1.25

– Next, the algorithm iterates over the elements of the sorted set so that it chooses

items t4 and t2 (the total profit of selected items is 13 while their total weight is 9).

The remaining items cannot be chosen as they lead to capacity overflow.

However, this greedy strategy does not guarantee the optimality. Indeed, the optimal

solution includes items t1, t3 and t4 in the sorted set (the total profit of selected items is

13.25 while their total weight is 10).

4. Implication of Matroid theory in greedy methods

Matroid theory covers many interesting applications of greedy methods.

4.1. Matroids

Definition. Let M = (E, I) be a couple where E is a nonempty finite set of n elements and

I is a nonempty family of subsets of E. M is said to be matroid if it satisfies the following

two conditions:

1) heredity property: if H ∈ I and if F ⊂ H then F ∈ I (we say that I is hereditary). In

other words, if I contains a subset H of set E, I contains all the subsets of H. Note

that the empty set is necessarily a member of I.

2) exchange property: if F and H are two elements of I, with |F| < |H|, then there

exists (at least) one element x ∈ H \ F such that F ∪ {x} ∈ I.

 Examples

1) Vector matroids: let E = {v1, …, vn} be a set of vectors in a vector space and I be

the family of all linearly independent vector subsets of E; M = (E, I) is a matroid.

2) Graph matroids (the forests of a graph): let G = (V, E) be an undirected graph and

I be the family of forests of G: F ⊂ I if and only if F is acyclic; M = (E, I) is a matroid.

Chapter 01 Greedy methods

11

 Properties

1) Given a matroid M = (E, I). For each element x ∉ F, we say that x is an extension of

F ∈ I if F ∪ {x} ∈ I.

2) Let F be an independent subset of a matroid M. So, we say that F is maximal if it has

no extension (i.e. it is maximal in the sense of inclusion).

Theorem. All maximal independent subsets of a matroid have the same cardinality.

Proof. Let assume that F is a maximal independent subset of M and there is another

larger independent subset H. The exchange property implies that F can be extended

to an independent set F ∪ {x} for some x ∈ H \ F, which contradicts the assumption

that F is maximal.

4.2. Greedy algorithms based on a weighted matroid

Let M = (E, I) be a matroid; M is said to be weighted if there is a weighting function w of

E in R+ which assigns a strictly positive weight w(x) to each element x ∈ E.

For F ⊂ E: w (F) =∑ w (x)

𝑥 ∈ 𝐸
.

 Question: Find an independent of maximal weight (optimal).

The following algorithm allows finding an independent set A from E of maximal weight.

Greedy algorithm

1. Sort the elements of E by decreasing weight: w(e1) ≥ w(e2) ≥ ….. ≥ w(en) ;

2. A ← 𝜙 ;

3. For i ← 1 to |E| do

4. If (A ∪ ei ∈ I) then

5. A ← A ∪ {ei} ;

 End if

 End for

6. Return A;

 Optimality proof

The greedy algorithm given above verifies both the greedy choice property and the optimal

substructure property. We will not provide the formal proof; more details can be found in

several other references. Based on these two results, the following theorem shows that the

said algorithm gives an optimal solution.

Theorem. The greedy algorithm presented above gives an optimal solution.

Proof. Let ek be the first independent element of E, i.e. the first index k of the algorithm

such that ek ∈ I.

Chapter 01 Greedy methods

12

 There is an optimal solution that contains ek (greedy choice).

 Then, by recurrence, we show that the algorithm gives an optimal solution (optimal

substructure): we restrict ourselves to a solution containing ek, and we start again

with E' = E – {ek} and I' = {X ∈ E'; X ∪ {ek} ∈ I}.

 By looking at E' = {ek+1, …., en}, the elements ej where j < k cannot be an

extension of an independent.

 Analysis of time complexity

Let n = |E|; the sorting phase of the greedy algorithm takes time of O(n log n). Each

execution of line 4 imposes to check whether set F ∪ {x} is independent or not. If this

verification takes time f (n) and the comparisons are done in constant times, the greedy

algorithm takes time of O (n log n) + n×f (n).

4.3. Typical examples

4.3.1. Scheduling on a machine

The single-processor task scheduling problem consists of a set of tasks X = {t1, t2, …, tn}

of duration 1, with deadlines d1, d2, …, dn: task ti must end before deadline di, otherwise a

penalty wi must be paid. The objective is to find a scheduling of the tasks that minimizes

the sum of the penalties.

 Principle of the resolution algorithm: it can be seen that the characteristics useful

to the algorithm are those of the matroid, as illustrated in the following pseudo-code.

Scheduling-Algorithm

1. Sort the elements of X by decreasing weight: w (t1) ≥ w (t2) ≥ ….. ≥ w (tn) ;

2. A ← 𝜙 ;

3. For i ← 1 to |X| do

4. If (A ∪ ti ∈ I) then

5. A ← A ∪ {ti} ;

 End if

 End for

6. Return A = {t1, t2, …, tk};

Set A produced by the Scheduling-Algorithm is the optimal solution with a complexity of

O (n log n).

 Example

To show the result of running this algorithm, we consider a typical set of 07 tasks whose

deadlines and associated penalties are given as follows:

Chapter 01 Greedy methods

13

Tasks (ti) t1 t2 t3 t4 t5 t6 t7

Deadlines (di) 4 2 4 3 1 4 6

Penalties (wi) 7 6 5 4 3 2 1

The greedy algorithm for this configuration of tasks goes through the following steps:

1. A = {t1}

2. A = {t2, t1}

3. A = {t2, t1, t3}

4. A = {t2, t4, t1, t3}

5. A = {t2, t4, t1, t3, t7}

The resulting schedule is then A = {t2, t4, t1, t3, t7} with a penalty of 5.

4.3.2. Vehicle rental problem

Consider a vehicle rental company that has a vehicle for which customers submit requests

identified by their beginning and end dates. Let E be the set of such statements; for any

e ϵ E, we denote by beg (e) and end (e) its beginning and end dates, respectively. The

commercial policy of the company is to satisfy as many customers as possible. The problem

is therefore to find a subset of E composed of compatible requests whose cardinality is

maximal. Formally, the compatibility between two requests e1 and e2 implies that

]beg (e1), end (e1)[∩]beg (e2), end (e2)[= ∅

 Principle of the resolution algorithm: to find the elements of set E, it is possible to

rely on a greedy algorithm whose principle is given in the pseudo-code below.

Vehicle-Rental-Algorithm (E)

Sort the elements of 𝐸 in ascending order of end date i.e. end (e1) ≤ ⋯ ≤ end (en)

s1 ← e1 ; // we choose the request that ends the earliest

k ← 1 ; // k denotes the number of currently satisfied customers

S ← {s1};

For i ← 2 to n do

If (beg (ei) ≥ end (sk)) then

k ← k + 1 ;

sk ← ei ;

S ← S ∪ {ei} ;

End if

End for

Return S = {s1, s2, …, sk} ;

Chapter 01 Greedy methods

14

This algorithm is based on a greedy strategy because it builds set S = {s1, s2, …, sk} in a

sequential way, such that at each step it makes the choice of the least cost (i.e. the

compatible query of earliest end-date). In addition, the characteristics of matroids are

projected directly onto this algorithm. Therefore, the Vehicle-Rental-Algorithm generates

Set S as the optimal solution with a complexity of O (n log n).

 Example

Let consider the set of requests given in the table below.

Elements of E (ei) e1 e2 e3 e4

Beginnings beg (ei) 3 0 2 0

Ends end (ei) 6 3 6 1

Sorting the requests gives end (e4) ≤ end (e2) ≤ end (e1) = end (e3). Thus, the Vehicle-

Rental-Algorithm goes through the following steps (see Figure 1.6):

– S = {e4} ;

– e2 is incompatible with e4, nothing occurs;

– e1 is compatible with e4 ; therefore, S = {e1, e4} ;

– e3 is incompatible with e3, nothing occurs.

– The returned solution is S = {e1, e4}.

Figure 1.6. Typical execution of the greedy algorithm.

5. Advantages and drawbacks of greedy methods

Greedy algorithms have some advantages over other algorithmic methods, including:

 Simplicity: greedy algorithms are often easier to describe and code than other

algorithms.

 Complexity: the search for a solution by a greedy algorithm can be considered as

an exploration of a tree of choices where one and only one branch is built without

going back. This reduces the cost of solving process in terms of time complexity.

Chapter 01 Greedy methods

15

 Efficiency: in many cases, greedy algorithms are implemented more efficiently

than other algorithms. Furthermore, they are highly recommended for quickly

retaining feasible solutions – even if they are not optimal.

Greedy algorithms also have some drawbacks; we cite as examples:

 Difficult to design: although greedy algorithms are easy to describe, the big

challenge is how to do it hoping that we successfully design a good strategy.

 Difficult to verify: demonstrating that a given greedy algorithm is efficient or even

optimal often requires a nuanced argument.

 No guarantee of optimality: even if greedy algorithms are often fast, on the other

hand the solution they determine can be arbitrarily far from the optimal solution.

16

Chapter II: Divide-and-conquer method

Objective:

This chapter aims to present the divide-and-conquer paradigm and to show some

of its application aspects to solve certain typical examples. It also provides a

theoretical comparison with greedy methods. Finally, this chapter discusses some

methods for evaluating the algorithms of this paradigm in terms of time complexity,

in particular through the Master-theorem.

1. Overview on the divide-and-conquer method

1.1. Principle of the divide-and-conquer method

Originally, divide-and-conquer was a widespread military strategy before becoming an

algorithmic design technique. Indeed, it was observed that defeating two armies of 50,000

soldiers successively was easier than facing a single army of 100,000 soldiers. Proceeding

analogously, it was inspired by this strategy to design algorithms which solve complex

problems by using sub-algorithms of lesser complexity. The principle consists in dividing

a large problem into several analogous sub-problems. The initial problem is solved by

recombining the partial results obtained by solving its parts. This process is applied

recursively until it reaches basic sub-problems which are directly solved. By their very

nature, recursive algorithms use this paradigm because they call themselves one or more

times on a partition of the original problem, solve the sub-problems recursively and then

combine the solutions to find a solution to the initial problem.

1.2. Strategy of the divide-and-conquer method

The divide-and-conquer paradigm follows a top-down approach, in order to provide

solutions to problems. The solving-process consists of three stages:

1) Divide the problem by decomposing it into similar sub-problems of smaller sizes

whose resolution is identical to that of the initial problem.

2) Conquer over the sub-problems through recursive solving (recursive calls). If the

size of a sub-problem is quite small, its resolution is done directly (i.e. we have

reached a basic case).

3) Combine the solutions of the sub-problems to construct a complete solution to

the initial problem.

Chapter 02 Divide-and-conquer method

17

In order to ensure a balanced processing, it is strongly recommended that the

decomposition of the problem (i.e. the "divide" stage) leads – as much as possible – to

sub-problems of roughly equal size. Let's consider the example of an integer N; if N is

even, we take two sub-problems of size N/2, otherwise we take two sub-problems of sizes

(N - 1) / 2 and (N + 1) / 2, respectively. The solution to the sub-problems is obtained by

applying the same process until the problem-solving becomes trivial. Generally, divide-

and-conquer algorithms are applied according to two main strategies:

 The first strategy is the recursion on data for which the data is directly

decomposed into a certain number of partitions. This gives rise to sub-problems

which are solved recursively using the same function. At the end, the results

obtained are combined in order to calculate the complete solution.

 The second strategy is the recursion on results which first carries out a

preprocessing before cutting the data into partitions. Then, it recursively solves the

resulting sub-problems using the same function. Finally, it combines the results

obtained in order to calculate the complete solution.

Figure 2.1. Strategy of the "divide-and-conquer" method.

1.3. General scheme

In general, a viable divide-and-conquer algorithm should:

– Efficiently divide the problem into sub-problems of balanced sizes (i.e. of

approximately the same size as possible).

– Recombine the solutions of the sub-instances through an effective exploitation of

the obtained partial results.

– Determine a fitting threshold at which the problem is easily solved on small

instances rather than relying on recursive calls.

Chapter 02 Divide-and-conquer method

18

The general scheme of the divide-and-conquer algorithm is given as follows:

Function Divide-and-conquer (P : Problem) : Solution

S : Solution ;

Begin

If (∥ P ∥ is small) then

 S ← Basic-case (P) ;

Else

 (P1, P2, ..., Pk) ← Divide (P) ;

 For i ← 1 à k do

 Si ← Conquer (Pi) ;

 End for

 S ← Combine (S1, S1, ..., Sk) ;

End if

Return S ;

End

2. Analysis of divide-and-conquer algorithms

2.1. General form of recursive formulas for time complexity

The time complexity of recursive algorithms is defined by means of recursive formulas as

according to problem size n. In particular, for a divide-and-conquer algorithm this

recursion is defined based on the three stages namely divide, conquer and combine:

1. If the size of the problem is small enough (basic case), n ≤ c for some constant c,

the solution is straightforward and therefore consumes a constant time of O (1).

2. Otherwise, the problem is divided into a sub-problems each of which is of size 1/b

of the initial problem size n. Thus, the total time breaks down into three parts as follows:

A. D (n): time required to divide the problem into sub-problems.

B. a × T (n/b): time required to solve a sub-problems.

C. C (n): time required to calculate the global solution using the partial solutions.

Thus, the recurrence relation takes the form:

T (n) =

O (1) if n ≤ c

a × T (n / b) + C (n) + D (n) = a × T (n / b) + O (nd)

where n/b is interpreted either as ⌊n / b⌋ or as ⌈n / b⌉.

Chapter 02 Divide-and-conquer method

19

2.2. The Master-theorem

The master theorem allows solving equations written as recursive formulas related to the

divide-and-conquer paradigm. Thus, we consider equation T(n) = a × T (n/b) + O (nd),

where n/b is interpreted either as ⌊n / b⌋ or as ⌈n / b⌉.

Let λ = logb a. There are three possible scenarios:

1) if λ > d, then T (n) = O (nλ) ;

2) if λ = d, then T (n) = O (nd log n) ;

3) if λ < d, then T (n) = O (nd).

In practice, only cases 1 and 2 lead to interesting algorithmic solutions. In case 3, all the

cost is concentrated in the recombination phase, which often means that there exist other

more efficient solutions.

3. Divide-and-conquer algorithms vs greedy algorithms

Both greedy and divide-and-conquer algorithms are two of the most widely used paradigms

for solving complex problems. Some differences between these methods are given in the

table below:

Feature Greedy algorithms Divide-and-conquer algorithms

Feasibility They make a choice that seems

the best at the time hoping that

it leads to the global optimum.

They make a decision at each step

taking into account the current sub-

problems to calculate the solutions.

Goal They are used to find solutions

to optimization problems,

hoping that the optimal

solutions are retained.

They are used to get solutions to

various problems without necessarily

working in the context of

optimization.

Recursion They are based on heuristics to

make the locally optimal choice

at each stage.

They are mainly based on recursive

formulas so that they use the same

process to solve the sub-problems.

complexity They generally run faster. They generally run slower.

Fashion They compute the solutions by

making choices in a serial

forward fashion, never looking

back or revising previous

choices.

They compute the solutions in top-

down by dividing the problems into

smaller sub-problems that are solved

independently. The solutions are

obtained by combining the partial

solutions of the solved sub-problems

Chapter 02 Divide-and-conquer method

20

4. Classic examples

Now, we present typical cases of applying the divide-and-conquer method to solve some

computation tasks.

4.1. Binary search vs sequential search in an array

Sequential (linear) search iterates over an array or a list to decide whether a given item

exists or not. The algorithm compares each element of the sequence with the sought item

until either it finds it or reaches the end of the sequence. The pseudo-code below gives the

steps for the sequential search for an item e in an array of integers T.

Input: sought item e and an array T = [e1, e2, ..., en].

Output: index i of the first element such that T [i] = e or 0 if e does not belong to T.

Begin

For i ← 1 to n do

If (T [i] = e) then

Return i ;

End if

End for

Return 0 ;

End

Binary search is an alternative solution to sequential search when dealing with an already

sorted array. The goal is to reduce time complexity. The basic idea behind binary search is

that at each step the array is divided into two equal parts. Then, the searched item is

compared with the item in the middle. If the searched item is found, then the algorithm

returns the corresponding cell index. Otherwise, if the searched item is lower than the

median element, we make a search in the left half of the array. Finally, if the searched item

is greater than the median element, we make a search in the right half of the array. In what

follows, we give the steps of binary search for an item e in a sorted array T [p..r].

– Divide: we partition array T [p .. r] around the median. Thus, we obtain two sub-

arrays T1 [p .. q-1] et T2 [q+1 .. r] ; q is the position of the median element.

– Conquer: if item e is equal to the median element (i.e. T [q]) or the size of the

array is lower than or equal to 1, the solution is directly got (basic case). Otherwise,

we recursively search in sub-arrays T1 and T2 using binary search algorithm.

– Combine: the decision about the existence of the item sought e is made based on

the decisions made by considering the two sub-arrays T1 and T2.

Chapter 02 Divide-and-conquer method

21

The following pseudo-code shows the steps of binary search for an item in a sorted array.

Function binary-search (T : array [begin .. end], item e) : integer

Begin

If (begin > end) then

Return 0 ;

Else

middle ← (begin + end) / 2 ; // in order to partition array T into two parts

If (T [middle] = e) then

Return middle ;

Else

If (T [middle] > e) then // binary-search in the first part

Return binary-search (T [begin .. middle - 1], e) ;

Else // binary-search in the second part

Return binary-search (T [middle +1 .. end], e) ;

End if

End if

End if

End

 Example

We want to search for item e = 38 in the sorted array T = [3, 9, 10, 27, 38, 43, 82] using

binary search. Thus, the algorithm presented above goes through the following steps:

Step 1: it compares the median element of the array (10) with value e = 38. As 10 is lower

than 38, it searches in the right half of array T.

Step 2: likewise, it divides the right half of array T into two equal sub-parts. Then, the

element at the median (38) is compared with the element sought (38). As the two elements

are equal, the goal is achieved by returning position 4 in array T.

Result: the sought element (38) was found at position 4 of array T. It is shown that the

time complexity of the binary search algorithm is O (log2 n).

4.2. Quick sort

Quick-sort is an algorithm for sorting arrays or lists while being designed around the

divide-and-conquer paradigm. The initial data is an unsorted sequence of integers. The

result is a sorted sequence of these integers. The basic idea behind the quick-sort algorithm

is to choose a pivot element in the array, partition the array around that pivot, and redo

Chapter 02 Divide-and-conquer method

22

the process recursively on the resulting sub-arrays. The pivot can be chosen in different

ways, by taking either the first element of the array or any element chosen at random. The

steps of applying the quick-sort algorithm to a given array T [p .. r] are as follows:

– Divide: we partition array T [p .. r] around the pivot. Then, we put all the elements

with small values to the left of the pivot (i.e. T [p.. q-1]) and all the elements with

greater values to the right of the pivot (i.e. T [q + 1.. r]); q is the final position of

the pivot. Hence, we obtain two unsorted sub-arrays T1 [p .. q-1] and T2 [q+1 .. r].

– Conquer: each of sub-arrays T1 [p .. q - 1] and T2 [q + 1 .. r] are recursively sorted

using the quick-sort algorithm.

– Combine: the two sorted sub-arrays are gathered to obtain a sorted array.

The pseudo-code below describes the steps of the quick-sort algorithm.

Procedure quick-sort (T : array [left .. right])

Begin

If (left < right) then

Initialize variables pivot, i and j to T [left], left and right, respectively;

While (i < j) do

i ← i + 1 ;

While (T [i] ≤ pivot AND i < j) do

i ← i + 1 ;

End while

While (T [j] > pivot) do

j ← j - 1 ;

End while

If (i < j) then

Swap (T, i, j) ;

End if

End while

Swap (T, left, j - 1) ;

quick-sort (T, left, j - 1) ; //quick-sort of the first part

quick-sort (T, j + 1, right) ; //quick-sort of the first part

End if

End

Chapter 02 Divide-and-conquer method

23

 Example

We want to sort an array of integers T = [38, 27, 43, 3, 9, 82, 10] using quick-sort. Thus,

the algorithm presented above goes through the following steps:

Step 1: it chooses a pivot, for example the first element of array T i.e. pivot = 38.

Step 2: it partitions array T around the pivot so that we put the elements smaller than 38

to the left of the pivot (i.e. T1 = [27, 3, 9, 10]) and the elements greater than 38 to the right

of the pivot (i.e. T2 = [43, 82]).

Step 3: it recursively sorts each of sub-arrays T1 and T2 in order to obtain a sorted array.

At the end, we get a sorted array: [3, 9, 10, 27, 38, 43, 82]. The time complexity of quick-

sort algorithm according to the worst case is shown to be O (n2).

4.3. Merge-sort

Merge-sort is another sorting algorithm based on the divide-and-conquer method. It is

used to sort arrays or lists recursively. The initial data and the result are therefore the same

as for the quick-sort algorithm.

The basic idea behind the merge-sort algorithm is to first divide the initial data sequence

into two equal parts, then sort each of the parts separately, and finally merge the two sorted

parts to obtain a sorted sequence. The efficiency of the algorithm lies in the fact that the

two sorted parts are merged in linear time. The steps of applying the merge-sort algorithm

to sort the elements of an array array T [1 .. n] are given as follows:

1. Divide: the sequence to be sorted is divided into two sub-sequences of
n

2

elements: T1 [1, … ,
𝑛

2
] and T2 [

𝑛

2
+ 1, … , 𝑛].

2. Conquer: if the array to be sorted contains at most one element, it is already

sorted. In this case, the algorithm simply returns the considered array without

modification (basic case). Otherwise, it recursively sorts each of the two parts T1

and T2 using the merge-sort algorithm.

3. Combine: the two sorted parts are merged into a single sorted part. To do so,

the algorithm compares the elements of the two parts in ascending or descending

order (depending on the sorting purposes), then it puts them in a new array so

that the resulting sequence is sorted.

The following pseudo-code describes the steps of the merge-sort algorithm.

Chapter 02 Divide-and-conquer method

24

Function merge-sort (T : array [begin .. end]) : array [begin .. end]

Begin

If (begin ≥ end) then

Return T ;

Else

middle ← (begin + end) / 2 ; // in order to partition array T into two parts

T1 ← merge-sort (T [begin .. middle]) ; // merge-sort of the first part

T2 ← merge-sort (T [middle +1 .. end]) ; // merge-sort of the second part

Return merge (T1, T2) ; // merge the two sorted parts

End if

End

Function merge (T1 : array [b1 .. e1], T2 : array [b2 .. e2]) : array T [begin .. end]

Initialize i, j and k to b1, b2 and 1, respectively;

While (i ≤ e1 AND j ≤ e2) do

If (T1 [i] > T2 [j]) then

Copy T1 [i] into T [k] and then increment i ;

Else

Copy T2 [j] into T [k] and then increment j ;

End if

k ← k + 1 ;

End while

For r ← i to e1 do

Copy T1 [r] into T [k] and then increment k ;

End for

For r ← j to e2 do

Copy T2 [r] into T [k] and then increment k ;

End for

Return T ;

End

 Example

We want to sort an array of integers T = [38, 27, 43, 3, 9, 82, 10] using merge-sort. Thus,

the algorithm presented above goes through the following steps (see Figure 2.2.):

Step 1: Array T is divided into two parts: T1 = [38, 27, 43, 3] and T2 = [9, 82, 10].

Chapter 02 Divide-and-conquer method

25

Step 2: We recursively sort each of the parts T1 and T2:

– Processing on part 1: we divide array T1 into two equal parts: T11 = [38, 27] and

T12 = [43, 3]. Then, we recursively sort each of the two subparts so that array T11

becomes [27, 38] and array T12 becomes [3, 43]. Finally, we merge the two sorted

subparts into a single sorted part: [3, 27, 38, 43].

– Processing on part 2: in a similar way, array T2 is divided into two parts: T21 = [9]

and T22 = [82, 10]. Then, we recursively sort each of the two subparts so that array

T21 remains unchanged (subpart already sorted) and array T22 becomes [10, 82].

Finally, we merge the two sorted subparts into a single sorted part: [9, 10, 82].

Step 3: the two parts resulting from the sorting of sub-arrays T1 and T2 are merged into a

single sorted part: [3, 9, 10, 27, 38, 43, 82].

The final result is a sorted array T' = [3, 9, 10, 27, 38, 43, 82]. It is shown that the time

complexity of the merge-sort algorithm is O (n log n).

Figure 2.2. Sorting array T using merge-sort algorithm.

4.4. Strassen's algorithm for matrix multiplication

Strassen's algorithm is a divide-and-conquer matrix multiplication algorithm that is faster

than the standard matrix multiplication algorithm for large matrices. The basic idea of

Strassen's algorithm is to divide the matrices to be multiplied into smaller sub-matrices, in

order to reduce the total number of scalar multiplications needed for the operation. More

precisely, if A and B are two square matrices of size n × n, Strassen's algorithm performs

the multiplication operation as follows:

– Divide: partition each matrix into four sub-matrices of size n/2 × n/2:

A= [
A11 A12

A21 A22
] , B= [

B11 B12

B21 B22
]

Chapter 02 Divide-and-conquer method

26

– Conquer: calculate the scalar multiplications Pi = 1 .. 7 and the scalar values Ci = 1 .. 4:

P1 = (A11 + A22) × (B11 + B22)

P2 = (A21 + A22) × B11

P3 = A11 × (B12 − B22)

P4 = A22 × (B21 − B11)

P5 = (A11 + A12) × B22

P6 = (A11 − A21) × (B11 + B12)

P7 = (A12 − A22) × (B21 + B22)

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 – P2 – P6

– Combine: form the resulting matrix C from sub-matrices Ci = 1 ..2, j = 1.. 2:

C = [
C11 C12

C21 C22
]

The main advantage of Strassen's algorithm is that it reduces the number of scalar

multiplications needed to perform matrix multiplication from 8 to 7. Although this strategy

seems non-significant, it generates a clear improvement in performance when dealing with

sufficiently large matrices.

 Example

In the following, Strassen's algorithm is applied to the calculation of a multiplication

operation of two matrices A and B of size 2 × 2.

Let A = [
1 2

3 4
] and B = [

5 6

7 8
] be two square matrices. Strassen's algorithm goes

through the following steps:

Step 1: divide each matrix into four sub-matrices of size 1×1:

A = [
A11 = [1] A12 = [2]

A21 = [3] A22 = [4]
] and B = [

B11 = [5] B12 = [6]

B21 = [7] B22 = [8]
]

Step 2: calculate the scalar operations:

P1 = (A11 + A22) × (B11 + B22) = (1 + 4) × (5 + 8) = 65

P2 = (A21 + A22) × B11 = (3 + 4) × 5 = 35

P3 = A11 × (B12 − B22) = 5 × (6 − 8) = -2

P4 = A22 × (B21 − B11) = 4 × (7 − 5) = 8

P5 = (A11 + A12) × B22 = (1 + 2) × 8 = 23

Chapter 02 Divide-and-conquer method

27

P6 = (A11 − A21) × (B11 + B12) = (1 − 3) × (5 + 6) = -22

P7 = (A12 − A22) × (B21 + B22) = (2 − 4) × (7 + 8) = -30

C11 = P1 + P4 – P5 + P7 = 65 + 8 – 24 -28 = 19

C12 = P3 + P5 = P3 + P5 = -2 + 24 = 22

C21 = P2 + P4 = P2 + P4 = 35 + 8 = 43

C22 = P1 + P3 – P2 – P6 = 65 – 2 – 35 + 22 = 50

Step 3: combine sub-matrices Ci = 1 ..2, j = 1.. 2 to obtain the final result:

C = [
19 22

43 50
]

The result is checked by performing the standard matrix multiplication A × B to obtain:

C = [
1 × 5 + 2 × 7 1 × 6 + 2 × 8

3 × 5 + 4 × 7 3 × 6 + 4 × 8
] = [

19 22

43 50
]

The result is identical to that obtained using Strassen's algorithm.

Note that for sufficiently large matrices, Strassen's algorithm shows higher performances

than the standard matrix multiplication algorithm. Nevertheless, Strassen's algorithm is not

always faster, as it has a higher constant running time.

5. Advantages and drawbacks of the "divide-and-conquer" method

Divide-and-conquer algorithms have some advantages over other methods, including:

 Simplicity: divide-and-conquer algorithms are often easier to describe and code

than other algorithms. This is because they mainly rely on recursive formulas.

 Possibility of parallelism: divide-and-conquer algorithms are naturally adapted

to perform parallel computation provided that the different threads run

independently (e.g. the merge-sort).

 Efficient use of cache memory: divide-and-conquer algorithms efficiently use

cache memory without occupying much space. Indeed, the sub-problems are small

enough so that they can be solved in cache without using the main memory which

is slower. Algorithms using cache efficiently are called cache oblivious.

Divide-and-conquer algorithms also have some drawbacks; let us cite as examples:

 Difficulties induced by recursion: divide-and-conquer algorithms naturally lend

themselves to recursive writing. This may lead to two major issues: high runtime

stack usage and resource overflow caused by the number of recursive calls.

 Computational redundancy: the recursive algorithms resulting from applying the

divide-and-conquer method sometimes lead to computational redundancy with

respect to the obtained sub-problems; the Fibonacci function is a good example.

28

Chapter III: Dynamic programming

Objective:

This chapter aims to present the dynamic programming paradigm and then to

show some of its application aspects to solve several typical examples. It also

provides a comparison with both greedy and divide-and-conquer methods. Finally,

this chapter presents some methods for designing such algorithms.

1. Overview on dynamic programming

1.1. Dynamic programming principle

Dynamic programming is an algorithmic method that solves optimization problems by

breaking them down into simpler sub-problems and then deals with these sub-problems

recursively. This approach can efficiently solve complex problems by avoiding

recalculating redundant sub-problems multiple times. To do so, dynamic programming

involves matrix programming methods. The idea is to store the intermediate results in an

array so that they are reused to solve later sub-problems. Generally speaking, dynamic

programming is very suitable for solving combinatorial optimization problems, where the

goal is to optimize a constrained objective function. In such cases, the solving-process

maintains a set of potential solutions for which it has to find the optimal solutions (i.e.

those maximizing or minimizing the value of the cost function).

1.2. When and how to use dynamic programming

Although dynamic programming is a general method of problem-solving, there is no rule

to say that it can or cannot be used to solve this or that problem. In general, the possibility

of using this method is a question that depends on the ability of satisfying two main

properties: the property of optimal substructure (Bellman's principle of optimality) and

the property of superposition (overlapping) of the sub-problems.

1) Optimal substructure property (Bellman's principle): any optimal solution

relies itself on the combination of locally solved sub-copies in an optimal way.

2) Property of the superposition (overlapping) of sub-problems: once the

recursive expression has been obtained, we proceed to an analysis of what happens

in a naive recursive implementation. If we realize that the same problem is solved

several times, we are then in the context of dynamic programming.

Chapter 03 Dynamic programming

29

1.3. Dynamic programming strategy

Dynamic programming follows both top-down and bottom-up approaches to solve

problems. The construction of solutions gives rise to four stages:

1) The application of Bellman's principle allows obtaining the recursive formula that

defines the solution to the considered problem according to its sub-problems.

2) In dynamic programming, each sub-problem is solved only once where the result

is stored in a cell of an array. The decomposition of the problem helps determine

the structure of this array (which can be of dimension 1, 2, 3, etc.) according to the

number of parameters involved in the recursive formula. Once the table of results

has been created, its elements are initialized. This step depends on the initial

conditions of the formula obtained in step 1.

3) Then, the solving-process fills in the table of results. This step consists in solving

the different sub-problems using the formula obtained in step 1, following bottom-

up or top-down orders. There are two approaches to populate the table of results:

i) iterative approach: the solving-process first initializes the cells corresponding

to the basic cases. Then, the table is filled in according to a very precise order:

the sub-problems are solved from smallest to largest until reaching the main

problem. For each decision step, only the solutions already calculated are used

so that each element is calculated once and only once.

ii) recursive approach: on each call to the solving-process, it looks at the table

to see if the value has already been calculated. If so, it is not recalculated but

rather the stored value is retrieved and used. Otherwise, it is calculated,

memorized in the corresponding cell and finally used.

4) Step 3 allows only retrieving the optimal value of the cost function without

specifying the intermediate values contributing to obtaining the result. In general,

the detail of the solutions requires traversing the table of results starting from the

final solution and reconstructing the reverse path of the calculations made to

achieve there.

1.4. General scheme

In general, to design an efficient algorithm based on dynamic programming principles,

some aspects should be taken into consideration: How to define the array of results as well

as the boundary values? In what order should one fill it in? Where to get the answer?

There are two main ways to store the values in order to reuse sub-problems results:

Tabulation which is bottom-up and Memoization which is top-down. The statements

Chapter 03 Dynamic programming

30

given in the following example help make a distinction between the two methods. Ali says:

"I will first learn foundations of dynamic programming, and then I will practice several

exercises in order to master this programming paradigm". In turn, Sarah says: "to master

the dynamic programming paradigm, I would practice several exercises but first I would

have to study its foundations". Both Ali and Sarah say the same thing, the difference simply

lies in the way the message is conveyed and that’s exactly what tabulation and memoization

do, respectively.

The general scheme of tabulation follows an iterative process, as given in the pseudo-code

below.

Function dynamic-programming (x : problem) : solution

Begin

Define an array T of dimension d ;

Initialize the values of cells in array T ;

For i1 ← beg1 to end1 do

For id ← begd to endd do

T [i1, …., id] ← expression using the cells already calculated ;

End for

End for

Return expression using cells from array T ;
End

Although it solves the problem of redundant computations found in the divide-and-

conquer method, dynamic programming may in turn lead to unnecessary calculations. This

is due to performing bottom-up treatments which may generate values that will not be

used later.

To overcome these difficulties, it is possible to rely on the technique of memoization

through an effective combination between the simplicity and elegance of the divide-and-

conquer paradigm (i.e. recursion) and the efficiency of dynamic programming (i.e. table of

results). The idea is to use an array of sufficient size that stores the solutions of the sub-

problems within a recursive function that defines the solving-process of the original

problem, as shown in the following pseudo-code.

Chapter 03 Dynamic programming

31

Global variables

T : array of d dimensions ;

function f (x1, x2, …, xd) : solution

Begin

If (T [i1, …., id] ≠ initialization value) then

s ← T [i1, …., id] ;

Else

s ← f (x'1, x'2, …, x'd) ;

T [i1, …., id] ← s ;

End if

Return s ;
End

The elements of array T are initialized with a special value to indicate that they are not yet

defined. Then, with each call to function f, we check the existence of the calculated value

in array T. If the values is already calculated, we directly return the content stored in array

T. Otherwise, we proceed to calculate function f, store the result in array T and finally

return the value calculated on these parameters. The memoization avoids the recalculation

of previously used values. Even so, this may lead to excessive use of additional memory

space; therefore, even if we gain in temporal complexity, we lose in spatial complexity. The

table below gives a comparison between the tabulation and memorization techniques.

 Tabulation Memoization

Transition state Difficult to think. Easy to think.

Code Complicated when several

conditions are required.

Easy and less complicated.

Speed Fast, as previous states are

directly accessed from the table

Slow due to the number of

recursive calls.

Sub-problem

solving

Useful when all sub-problems

must be solved at least once.

Useful in cases where some sub-

problems do not need to be

solved at all.

Table entries All entries are filled one by one,

starting from the first entry

(basic cases).

All entries of the lookup table are

not necessarily filled; the table is

filled on demand.

Approach Iterative approach. Recursive approach.

Chapter 03 Dynamic programming

32

2. Dynamic programming vs divide-and-conquer paradigm

The divide-and-conquer paradigm relies on breaking down a problem into identical sub-

problems, solving them recursively, and then combining the partial solutions to form the

solution to the initial problem. If such a decomposition always leads to independent sub-

problems, this strategy is probably effective. Otherwise, if the resulting sub-problems have

dependencies between them, they will have other common sub-problems. This leads the

algorithm to perform extra processing since it solves certain sub-problems several times.

This disadvantage is illustrated by Figure 3.1 which schematizes the execution of the

calculation of the Fibbonacci sequence by the divide-and-conquer method.

Figure 3.1. Execution scheme of Fibbonacci sequence by the divide-and-conquer method.

Dynamic programming is a design paradigm that overcomes some of the difficulties

induced by the divide-and-conquer paradigm by making improvements and adaptations so

that redundant computations will be computed only once. Just like in the divide-and-

conquer method, this paradigm also solves a given problem based on the previous

solutions obtained from the sub-problems. However, in dynamic programming, sub-

problems may overlap so as to be used in solving several different sub-problems. On the

other hand, in the divide-and-conquer paradigm, the sub-problems are completely

independent of each other and are solved separately even if they present redundant

computations. In other words, dynamic programming allows sub-problems to interact with

each other, which is not the case for the divide-and-conquer method. Figure 3.2 illustrates

this difference between these two methods where the root represents the problem to be

solved while the descendants represent the sub-problems whose resolution is easier. In

particular, the leaves represent the sub-problems corresponding to the basic cases (i.e.

trivial resolution without decomposition).

The second major difference between these two methods lies in the way of carrying out

the computations to solve a given problem through the recombination of the solutions of

the sub-problems. In the divide-and-conquer method, treatments are always performed

Chapter 03 Dynamic programming

33

from top to down, starting with solving the largest sub-problems. In contrast, treatments

in dynamic programming can be carried out as well in bottom-up as in top-down

depending on whether one starts with solving the smallest sub-problems before the main

problem or not.

Figure 3.2. Difference between dynamic programming and divide-and-conquer methods.

3. Dynamic programming vs greedy algorithms

Greedy algorithms and dynamic programming are two of the most widely used paradigms

for solving optimization problems. Detailed differences are given in the table below:

Feature Greedy algorithms Dynamic programming

Feasibility They make a choice that

seems the best at the time

hoping that it leads to the

global optimal solutions.

It makes a decision at each step taking

into account the current problem and

the solutions of solved sub-problems

to calculate the optimal solution.

Optimality Sometimes there is no

guarantee to get the optimal

solutions.

It is guaranteed to get the optimal

solution as it considers all possible

cases and then chooses the best one.

Recursion They are based on heuristics

to make the locally optimal

choice at each stage.

It is based on recursive formulas that

use some previously calculated states.

Space / time

complexity

They are more efficient in

terms of memory as they

never look back. Moreover,

they generally run faster.

It stores the intermediate results of

solved sub-problems in a table; this

may increase the space complexity.

Moreover, they generally run slower.

Fashion They compute the solutions

by making choices in a serial

forward fashion while never

looking back or revising

previous choices.

It computes the solutions in bottom-

up or top-down by synthesizing them

from smaller optimal sub-solutions.

Chapter 03 Dynamic programming

34

4. Classic examples

Now, we present some typical cases of dynamic programming applications to solve certain

computational tasks.

4.1. Calculation of shortest path in a graph (Floyd-Warshall algorithm)

Let G = (V, E) be a directed graph where each edge has a non-negative length; V = {1, 2,

…, n} is a set of n vertices (nodes) and E is the set of edges between the vertices. The

distances between the vertices are represented as adjacency matrix M [1..n, 1..n]. To

calculate the length of the shortest paths between all pairs of vertices from set V, Floyd's

algorithm is used. To do so, it builds a matrix D which gives the length of the shortest path

between each pair of vertices. This is an optimization problem that verifies the optimality

principle: if the shortest path (optimal path) between two vertices A and B goes through

an intermediate vertex C, then the portions of paths between A and C, and between C and

B, must necessarily be optimal.

1. Recursive formula: Floyd's algorithm calculates the shortest path between each

pair of vertices by using as intermediate vertices the elements of set V in order and

successively. At each iteration k, matrix D gives the length of the shortest paths by

involving only vertices {1, ..., k} as intermediate nodes. The recursive formula for

calculating matrix D values is given as follows: ∀ i, j ∈ V, D [i, j, k] = min (D [i, j,

k - 1], D [i, k, k-1] + D [k, j, k-1]); the aim is to finally calculate D [i, j, n].

2. Definition and initialization of the array of results: the decomposition of the

problem shows that the recursive formula is defined according to a single

parameter: iteration number k. Intuitively, the array of results, denoted by D[1..n,

1..n, 1..n, 0..n], is three-dimensional (d = 3), where each element D [i, j, k] will

store the shortest distance between vertices i and j involving only nodes {1, .., k}.

3. Filling in the array of results: the filling of the array of results is done according

to the iterative approach, as shown in the pseudo-codes below.

4. Reading the solution: by reading any given cell D [i, j, n], we obtain an immediate

answer about the shortest path between vertices i and j. However, if we want to

list the intermediate vertices composing the shortest path between vertices i and j,

we need to add an array N [1..n, 1..n, 1..n, 0..n] such that each cell N [i, j, k] keeps

the index of the selected vertex at iteration k.

Chapter 03 Dynamic programming

35

Floyd's algorithm

Global variables

M [1..n, 1..n, 1..n, 0..n] : array of real ; //vertices and edges of graph G = (V, E)

D [1..n, 1..n, 1..n, 0..n] : array of real ;

Procedure Floyd-Warshall ()

Begin

For i ← 1 to n do

For j ← 1 to n do

D [i, j, 0] ← M [i, j] ; //Assume that M [i, i] = 0 and M [i, j] = +∞ if (i, j) ∉ E

End for

End for

For k ← 1 to n do

For i ← 1 to n do

For j ← 1 to n do

D [i, j, k] ← min (D [i, j, k - 1], D [i, k, k-1] + D [k, j, k-1]) ;

End for

End for

End for

End

4.2. Calculation of the binomial coefficient

A binomial coefficient, denoted by C k
 n

, is defined over each two integers n ≥ 0 and k with

0 ≤ k ≤ n, as the number of parts with k elements of a set of n elements. Here, we are

interested in the recursive definition of binomial coefficients, given by the following

formula:

C k
 n

 =

1 if n = k or k = 0

C k
 n - 1

 + C k - 1
 n - 1

It is then asked to write a function that calculates C k
 n

 using the principle of dynamic

programming. For this purpose, we rely on the steps defined in section 4.

1. Recursive formula: the recursive formula is the same as the one given above.

2. Definition and initialization of the table of results: the decomposition of the

problem shows that the recursive formula is defined according to two parameters:

Chapter 03 Dynamic programming

36

n and k. Intuitively, the array of results, denoted by T [0..n, 0..k], is two-dimensional

(d = 2), where each element T [i, j] will store the value C i
 j

 (see Figure 3.3).

Figure 3.3. The array of results for the calculation of the binomial coefficient.

3. Filling in the array of results: the filling of the array of results is done according

to both iterative and recursive approaches, as shown in the pseudo-codes below.

4. Reading the solution: by reading each cells T [n, k], we obtain an immediate

answer about the value C k
 n

. Now, if we want to get this value as a sum of terms,

we just need to backtrack over the cells of array T based on the recursive formula.

Iterative approach Recursive approach

Global variables

T [0 .. n, 0 .. k] : array of integers ;

Function C (n, k : integer) : integer

Begin

//initialization

For i ← 0 à n do

T [i, 0] ← 1 ;

T [i, i] ← 1 ;

End for

For i ← 2 à n do

For j ← 1 à min (k, i - 1) do

T [i, j] ← T [i -1, j -1] + T [i -1, j] ;

End for

End for

Return T [n, k] ;

End

Global variables

T [0 .. n, 0 .. k] : array of integers (initialized to 0

except for basic cases to 1) ;

Function C (n, k : integer) : integer

Begin

If (T [n, k] ≠ 0) then

Return T [n, k] ;

Else

If (k = 0 OR k = n) then

v ← 1 ;

Else

v ← C (n - 1, k - 1) + C (n - 1, k) ;

End if

End if

T [n, k] ← v ;

Return v ;

End

Chapter 03 Dynamic programming

37

4.3. Wooden planks cutting problem

Let consider a sawmill that sells wooden planks according to their lengths: the selling price

of a wooden plank of length i is pi. When it receives as input a wooden plank of length n,

it can either derive the profit / price pn directly, or seek to cut it into k pieces to derive

several sub-planks of length i1, i2, …., ik (with i1 + i2 + ….+ ik = n) and obtain as profit

the sum pi1 + pi2 + ….+ pik of the selling prices of the sub-planks. For the sawmill problem,

it is asked to determine the solution that will guarantee a maximum profit for any given

wooden plank of length n.

Exemple

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 30

Possibilities for a wooden plank of length i = 4.

– No cutting: profit 9

– Cutting 1 + 3: profit 1 + 8 = 9

– Cutting 2 + 2: profit 5 + 5 = 10

– Cutting 3 + 1: profit 8 + 1 = 9

– Cutting 1+1+2: profit 1 + 1 + 5 = 7

– Cutting 1+2+1: profit 1 + 5 + 1 = 7

– Cutting 2+1+1: profit 5 + 1 + 1 = 7

– Cutting 1+1+1+1: profit 1 + 1 + 1 + 1 = 4.

Optimal solution: cutting 2+2, i.e. 2 pieces of length 2 with a total profit of 10.

1. Recursive formula: let rn be the maximum profit achievable for a wooden plank

of length n, with r0 = 0. A possible recursive formula is: rn = max
1 ≤ i ≤ n

(p
i
+ rn-i). It

is obtained by considering that what we get in the end is a piece at the left end of

length i and therefore at price pi, and a rest of length n - i, which must be an

optimal cut of a wooden plank of length n - i.

2. Definition and initialization of the array of results: the decomposition of the

problem shows that the recursive formula is defined according to a single

parameter: the length of a plank n. Intuitively, the array of results, denoted by

R[0..n], is one-dimensional (d = 1), where each element R [i] will store the

maximum profit achievable for a plank of length i.

Chapter 03 Dynamic programming

38

3. Filling in the array of results: the filling of the array of results is done according

to both iterative and recursive approaches, as shown in the pseudo-codes below.

4. Reading the solution: by reading any given cell R [i], we obtain an immediate

answer about the maximum profit achievable for a plank of length i. However, if

we want to know the different cuts of each plank of length i leading to recording

an optimal profit, it is necessary to add an array S [0 .. n] which keeps the index of

the left plank; the right part is easily deduced in the same way.

Iterative approach Recursive approach

Global variables

S [0 .. n] : array of integers ; // lengths

P [0 .. n] : array of integers ; // profits

R [0 .. n] : array of integers ; // max profits

Function Cut (n : integer) : integer

Begin

//initialization

R [0] ← 0 ;

For j ← 1 à n do

q ← −∞ ;

For i ← 1 à j do

If (q < P [i] + R [j - i]) then

q ← P [i] + R [j - i] ;

S [j] ← i ;

End if

End for

R [j] ← q ;

End for

Return R [n] ;

End

Global variables

S [0 .. n] : array of integers ; // lengths

(initialized to −∞)

P [0 .. n] : array of integers ; // profits

R [0 .. n] : array of integers ; // max profits

Function Cut (n : integer) : integer

Begin

If (R [n] ≥ 0) then

Return R [n] ;

Else

if (n = 0) then

q ← 0 ;

Else

q ← −∞ ;

For i ← 1 à n do

If (q < P [i] + Cut (n – i)) then

q ← P [i] + Cut (n – i) ;

S [n] ← i ;

End if

End for

End if

R [n] ← q ;

End if

Return q ;

End

Chapter 03 Dynamic programming

39

If we want to display the lengths of the different pieces of cutting a plank of length n

(reading a solution), we just have to run the following pseudo-code:

While (n > 0) do

Print ("a piece of length: ", S [n]) ;

n ← n - S [n] ;

End while

4.4. Maximum path sum in a pyramid of numbers

In a pyramid of numbers, we seek to maximize the sum of the numbers crossed starting

from the top of the pyramid and descending in stages one-by-one. In the example shown

in Figure 3.4, the maximum corresponds to the path colored in red (3+7+4+9=23).

Figure 3.4. The maximum path sum in a typical pyramid of numbers.

Practically speaking, the pyramid of numbers can be modeled as a lower triangular matrix

P [1..n, 1..n], n is the number of stages as given in Figure 3.5.

3 0 0 0

7 4 0 0

2 4 6 0

8 5 9 3

Figure 3.5. The lower triangular matrix related to the pyramid shown in Figure 3.4.

We denote by S (i, j) the maximum sum corresponding to cell (i, j) in matrix P. Each value

S (i, j) depends on the value of cell (i, j) (i.e. P [i, j]) and the values of the maximum sum

of its left and right children (i.e. S (i+1, j) and S (i+1, j+1)). Consequently, the recursive

definition of the maximum path sum for each cell (i, j) is given by the following formula:

S (i, j) =

P [i, j] when i = n
(1 ≤ i, j ≤ n)

P [i, j] + max (S (i + 1, j), S (i + 1, j + 1)) when i < n

Thus, it is asked to write a function that calculates the sum of all maximum paths S (i, j),

in particular S (1, 1), using the principle of dynamic programming. To achieve this goal,

we rely on the steps defined in section 4.

1. Recursive formula: the recursive formula is the same as the one given above.

Chapter 03 Dynamic programming

40

2. Definition and initialization of the table of results: the decomposition of the

problem shows that the recursive formula is defined according to two parameters:

i and j. Intuitively, the array of results, denoted by T [1..n, 1..n], is two-dimensional

(d = 2), where each element T [i, j] will store the value S (i, j).

3. Filling in the array of results: the filling of the array of results is done according

to both iterative and recursive approaches, as shown in the pseudo-codes below.

4. Reading the solution: by reading each cells T [i, j], we get an immediate answer

about the maximum value in position (i, j) in the pyramid. Now, if we want to get

this value as a sum of terms, we need to add an array N [1..n, 1..n] such that each

cell N [i, j] stores the column number of the cell maximizing S (i, j) while taking as

value either j or j + 1.

Iterative approach Recursive approach

Global variables

P [1 .. n, 1 .. n] : array of integers ;

N [1 .. n, 1 .. n] : array of integers ;

T [1 .. n, 1 .. n] : array of integers ;

Function S () : integer

Begin

//initialization

For i ← 1 à n do

T [n, i] ← P [n, i] ;

End for

For i ← n - 1 à 1 do

For j ← i à 1 do

// we can modify this line of code

to save j or j + 1 in N [i, j]

v ← max (T[i+1, j], T[i+1, j+1]) ;

T [i, j] ← P [i, j] + v ;

End for

End for

Return T [1, 1] ;

End

Global variables

P [1..n, 1..n] : array of integers ;

N [1 .. n, 1 .. n] : array of integers ;

T [1..n, 1..n] : array of integers (initialized to -1

except for basic cases i=1..n: T [n, i] ← P [n, i]);

Function S (i, j : integer) : integer

Begin

If (j = n + 1) then

Return 0 ;

Else

If (i = n OR T [i, j] ≠ -1) then

Return T [i, j] ;

Else

// we can modify this line of code to save

j or j + 1 in N [i, j]

v ← max (S (i+1, j), S (i+1, j+1)) ;

T [i, j] ← P [i, j] + v ;

End if

End if

Return T [i, j] ;

End

Chapter 03 Dynamic programming

41

If we want to display the path of the minimum sum starting from the top, we just have to

run the following pseudo-code:

j ← N [1, 1] ;

Print ("Element: [1, 1]") ;

For i ← 1 à n - 1 do

Print ("Element: [", (i + 1), ", ", j,"]") ;

j ← N [i, j] ;

End for

5. Advantages and drawbacks of dynamic programming

Algorithms based on dynamic programming have certain advantages over other

algorithmic methods, including:

 Optimality: algorithms based on dynamic programming always retain the optimal

solutions when it is asked to solve optimization problems.

 Dependency management between calculations: dynamic programming

better manages the dependency links between calculations. Indeed, we only need

to store the elements used to solve the next sub-problems, and thus get rid of most

of the old sub-problems which can hinder the progress of the algorithm.

 Facilities offered by memoization: the technique of memoization has several

advantages such as the ease of coding and the use of a cache to obtain responses.

Algorithms based on dynamic programming also have some drawbacks; cite as examples:

 Design difficulties: designing dynamic programming algorithms to solve

complex problems is sometimes very complicated, as it requires a precise

decomposition of the problem into sub-problems and a deep understanding of the

relationships between the sub-problems.

 Storage space: dynamic programming may require a lot of storage space to store

intermediate results; this is problematic for large problems. It may also lead to

performance issues because memory management may become a bottleneck for

such algorithms.

 Application limitations: dynamic programming is not a general solving-method

to all optimization problems. Some problems classes may not be suitable for

dynamic programming as they lack the properties of recurrent sub-problems and

well-defined transition relations.

42

Chapter IV: Backtracking

Objective:

This chapter aims to present the principles of the backtracking method as well as

its use for solving constraint satisfaction problems. It also provides a theoretical

comparison with dynamic programming. Next, it shows the application aspects of

backtracking algorithms to solve some typical examples. Finally, this chapter

presents some methods to improve the design of such algorithms.

1. Constraints satisfaction problems

– A constraint satisfaction problem (CSP) is defined by a triplet (X, D, C), where:

 X = {x1, … , x𝑛} is a finite set of variables to solve,

 D is a function that associates to each variable xi a domain of definition

D (xi), i.e. set of values that variable xi can take.

 C = {c1, …, cm} is a finite set of constraints on variables xi = 1 .. n.

– We call state any assignment of values (i.e. evaluation) for some or all of variables

xi = 1 . .n. This is a set of pairs (variable, values): A = {(xi, vi) / xi ∈ X and vi ∈ D (xi)}.

An evaluation is said to be partial if it corresponds to a subset of variables and

total (also called complete) otherwise. An evaluation is said to be consistent if it

shows no violation of constraints (i.e. satisfies all the constraints).

– A solution to a CSP problem is a complete and consistent evaluation. Moreover,

sometimes the solution must optimize a given objective function.

 Example: let consider a CSP defined by a triplet (X, D, C) such that:

 X = {x1, x 2, x 3} is the set of variables,

 The domain D of the variables of set X: D (x1) = D (x2) = D (x3) = {1, 2, 3},

 C is the set of constraints: C = {c1 : x1 = x2 + x3}.

The solutions of this problem are A1 = (2, 1, 1), A2 = (3, 1, 2) and A3 = (3, 2, 1).

2. Overview of the backtracking method

2.1. Principle of the backtracking method

Backtracking is a general algorithm that can be applied to several problems, in particular

for CSPs. It is based on a systematic method that iterates over all possible configurations

Chapter 04 Backtracking

43

of a search space. In a backtracking-based algorithm, a potential solution is usually encoded

as a vector (n-tuple) A = (x1, x2, …, xn) such that each variable xi = 1 .. n is an element from

a finite set X and defined over a set of values D (xi). In the end, the algorithm retains one

or more vectors satisfying certain criteria, linked to an optimization function in some cases.

At each step, the backtracking algorithm forms a solution and checks whether there is still

a chance for success or not. To this end, the algorithm starts with a given partial solution

sol = (x1, x2, …, xk) (k ≤ n), tries to extend it by adding another element xk + 1 and decides

whether the result is valid (i.e. potentially extendible partial solution) so that it may lead to

a complete solution. If so, the algorithm recurs and continues hoping it reaches a complete

solution. Otherwise, it backtracks by deleting the last element from the current partial

solution and then tries another possibility for that position if possible.

Backtracking is a modified depth first search on an implicit tree of configurations, since

the search for solutions is assisted by using a tree-like organization of the solutions space.

The nodes are the different states and the arcs represent the transitions from one state to

another. In the event that a given node cannot lead to consistent nodes (i.e. dead-end), the

algorithm goes back (backtracks) to the parent nodes and proceeds to search on the next

child, as shown in Figure 4.1.

Figure 4.1. Tree of configurations (solutions space).

A backtracking algorithm does not actually need to build a tree but rather it only needs to

keep track of the values in the current branch being investigated. That is why it is said that

the state space tree exists implicitly in the algorithm as it is not entirely created in memory.

Such a tree is called a decision tree (also known state-space tree). The root represents an

initial state that precedes the search process. The nodes of any given level i of the decision

tree represent the choices made to build the ith component of the solution vector. A node

d in a given decision tree is said to be promising if it is part of a partial solution that still

leads to a complete solution; otherwise, it is said to be unpromising. Leaf nodes represent

either dead-ends or complete solutions.

Chapter 04 Backtracking

44

If the current node is promising, its child is generated by adding the next component to

the current partial solution so that it (i.e. the child) undergoes some processing. In contrast,

if the current node turns out to be unpromising, the algorithm backtracks to the node's

parent and assigns another value to its last component. If no such option exists, the

algorithm backtracks to the highest level in the tree, until reaching all complete solutions.

2.2. General scheme

In what follows, we present the most elementary recursive form of the backtracking

method, in which the order of visiting the decision variables as well as the choice of their

values (instantiation) are both fixed in advance.

Procedure Backtracking (non-instantiated-var, instantiated-var : set of variables)

Begin

If (non-instantiated-var = ∅) then

// we have assigned values to all decision variables successfully

instantiated-var is a solution as it is a consistent evaluation ;

Else

next-decision-var ← choose the next variable from non-instantiated-var;

For each value ∈ D (next-decision-var) do

next-decision-var ← value ;

If (instantiated-var ∪ {next-decision-var} is consistent) then

Backtracking (non-instantiated-var - {next-decision-var},

instantiated-var ∪ {next-decision-var}) ;

End if

End for

End if

End

The backtracking procedure takes as input parameters two sets of decision variables,

denoted by non-instantiated-var and instantiated-var. Variable non-instantiated-var

keeps track of the decision variables that are not yet instantiated while variable

instantiated-var keeps track of the decision variables that are already instantiated (i.e. with

assigned values). Initially, the backtracking procedure is invoked in such a way that variable

non-instantiated-var contains the set of all decision variables to be instantiated while

variable instantiated-var is initialized with the empty set (i.e. instantiated-var = Ø).

Through recursive calls, the execution scheme of the backtracking procedure oscillates

Chapter 04 Backtracking

45

between moving forward and backtracking on previously instantiated decision variables

(rollback), in order to take other paths guided by the new values (instances) assigned.

3. Backtracking vs dynamic programming

Backtracking and dynamic programming are two of the most widely used paradigms for

solving different complex problems. Some differences are given in the table below. It

should be noted that we will not provide a comparative between backtracking and greedy

methods as the latter can be seen as a branch in the state tree for the former.

Feature Backtracking Dynamic programming

Feasibility It builds a solution

incrementally, one piece at a

time while removing those

elements that fail to satisfy the

constraints until finding the

solutions.

It makes a decision at each step taking

into account the current problem and

the solution to already solved sub

problems to calculate the optimum.

Application It always gets the sought

solutions for CSP,

optimization problems and

enumerations as it cuts all

possible paths.

It always gets the optimal solutions for

optimization problems as it considers

all possible cases and then choose the

best.

Recursion It draws the braches of the

state tree by eliminating

unpromising choices and

proceeding to promising ones

It is based on recursive formulas that

use previously calculated states (a

problem is recursively defined based

on other sub-problems).

Space / time

complexity

It is more efficient as there is

no need to store all partial

results thanks to recursive

calls. Nevertheless, it

generally run slower.

It requires a table to store all partial

results which leads to an increase in

space complexity. Nevertheless, it

generally runs faster.

Fashion It computes the solutions

through a systematic search in

solutions spaces according to

a depth-first search with any

bounding function.

It computes the solutions in bottom-

up or top-down by synthesizing them

as smaller optimal sub solutions.

Chapter 04 Backtracking

46

4. Classic examples

Now, we present some typical cases of backtracking algorithms applications to solve

certain computation tasks.

4.1. N-Queens problem

The N-Queens problem consists in placing N chess queens on an N×N chessboard in a

way that there will be no queens attacking each other. In other words, any solution requires

that no two queens share the same row, column or diagonal, as shown in Figure 4.2.

Figure 4.2. A typical solution for N-Queens problem using an 8×8 chessboard.

 Problem formulation

To solve this problem, we assume that each queen is fixed to a given column so that it can

only change its position at rows. In the following, we specify the decision variables, their

definition domain and the constraints imposed on them.

– Decision variables set X = {xi = 1.. N}: each variable xi designates whether the ith

queen is placed in a given row or not yet.

– Domain of definition of the decision variables: D (xi = 1.. N) = {0, …, N}. If (xi = 0)

then the ith queen is not yet placed; otherwise, it is placed at row with the value

assigned to xi.

– Constraints on the decision variables: we have to find all possible placements in

such a way that:

 The queens must be on different rows: C1 = {∀ i, j ∈ {0, 1, …, N}, if i ≠

j then xi ≠ xj}.

 The queens must be on different ascending diagonals: C2 = {∀ i, j ∈ {0, 1,

…, N}, if i ≠ j then xi + i ≠ xj + j}.

 The queens must be on different descending diagonals: C3 = {∀ i, j ∈ {0,

1, …, N}, if i ≠ j then xi - i ≠ xj - j}.

The pseudo-code below describes the steps of the corresponding backtrack algorithm,

according to the general scheme presented above.

Chapter 04 Backtracking

47

Algo-back-track (X : array [1 .. N] of integers, i: integer)

j : integer ;

OK : Boolean ;

Begin

 If (i = N + 1) then

 //X is a potential solution (valid queen placement)

 Else

 For j ← 1 to N do

 X [i] ← j ;

 OK ← check-position-constraints (X, i, j) ;

 If (OK) then

 Algo-back-track (X, i + 1) ;

 End if

 End for

 End if

End

 Example

Let consider a chessboard of 4×4. The backtracking algorithm execution paths are

illustrated in Figure 4.3.

Figure 4.3. Execution paths of the backtracking algorithm on a 4×4 chessboard.

Note that:

– A1 = (2, 4, 1, 1) is not a solution because the queens placement is complete but not

consistent as constraint C1 is not satisfied.

– A2 = (1, 3, -, -) is a promising partial evaluation while A3 = (1, 3, 3, -) is an

unpromising partial evaluation.

– A4 = (2, 4, 1, 3) is a solution.

Chapter 04 Backtracking

48

4.2. Graph coloring problem

Let consider an undirected graph G and a given number m. It is asked to determine all

graph coloring configurations for graph G using m colors so that no two adjacent vertices

are colored with the same color. Here, coloring a graph means assigning colors to vertices.

 Problem formulation

This is a CSP, for which we need to specify the decision variables, their definition domain

and the constraints imposed on them. Let S = {s1, s2, .., sn} be a set of n vertices, m be the

maximum number of colors and M [1 .. n, 1 .. n] be the adjacency matrix for graph G.

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether vertex si

is colored or not yet.

– Definition domain of the decision variables: D (xi = 1.. n) = {0, 1, …, m}. If (xi = 0)

then si is not yet colored; otherwise, it is colored with the value assigned to xi.

– Constraint on the decision variables: C = {∀ si, sj ∈ S if M [i, j] = 1 then xi ≠ xj}

The pseudo-code below describes the steps of the corresponding backtrack algorithm,

according to the general scheme presented above.

Global variables

Constant m;

M : array [1 .. n, 1 .. n] of integers ;

Algo-back-track (X : array [1 .. n] of integers, i: integer)

i : integer ;

OK : Boolean ;

Begin

 If (i = n + 1) then //X is a potential solution (valid graph coloring)

 Else

 For j ← 1 to m do

 X [i] ← j ;

 OK ← check-color-consistency (X, i, j) ;

 If (OK) then

 Algo-back-track (X, i + 1) ;

 End if

 End for

 End if

End

Chapter 04 Backtracking

49

Example

Let G be the graph given in Figure 4.4 and m = 4 is the maximum number of colors.

Figure 4.4. A typical graph with four vertices and five edges.

Note that:

– A1 = (2, 4, 1, 0) is a partial evaluation as x4 does not refer to any color.

– A2 = (1, 3, 2, 2) is not a solution because it is not a consistent evaluation as the

constraint on adjacent vertices coloring is not satisfied.

– A3 = (2, 4, 1, 3) and A4 = (2, 1, 2, 3) are potential solutions with respect to the

constraints on adjacent vertices coloring. Even so, it is possible to compare

between the different solutions according to the total number of colors used, thus

keeping those colored using a smaller number.

4.3. Modified knapsack problem (inspired from the original formulation)

In this version of the knapsack problem, it is asked to purchase a subset from a set of n

items with given values and weights. Each item i is worth vi and weighs wi. The aim is to

maximize the number of purchased items while taking into account that the maximum

capacity of the container is W and the purchase budget is B.

 Problem formulation

This is a CSP that requires optimizing an objective function (the number of purchased

items). Therefore, we need to specify the decision variables to solve, their domain of

definition and the constraints imposed on them, in addition to the objective function to

be optimized.

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether item i is

chosen to be purchased and therefore put in the container or not.

– Domain of definition of the decision variables: D (xi = 1.. n) = {0, 1}; if (xi = 1) then

item i is purchased and put in the container and quite the opposite for xi = 0.

– Constraints on the decision variables: we have to maximize the number of

purchased items:

Chapter 04 Backtracking

50

f (x) = ∑ xi

 n

i = 1

Subject to:

 C1: ∑ wi × xi ≤ C n
 i = 1

 C2: ∑ vi × xi ≤ Bn
i=1

The pseudo-code below describes the steps of the corresponding backtrack algorithm,

according to the general scheme presented above. We note here that it is possible to make

some code optimizations in order to improve its overall complexity (e.g. adaptive

computing of the price and weight for partial evaluations).

Global variables

nb-max : initialized to 0 ;

X-max : array [1 .. n] of integers ;

Algo-back-track (X : array [1 .. n] of integers, i: integer)

weight, price, nb, j : integer ;

Begin

 If (i = n + 1) then //X is a potential solution but not necessarily optimal

 nb ← ∑ 𝑥𝑗
𝑛
𝑗=1 ;

 If (nb > nb-max) then

 nb-max ← nb ;

 X-max ← X ; //X is better than current optimal solution.

 End if

 Else

 For j ← 0 to 1 do

 X [i] ← j ;

 weight ← ∑ 𝑤𝑗𝑥𝑗
𝑖
𝑗=1 ;

 price ← ∑ 𝑣𝑗𝑥𝑗
𝑖
𝑗=1 ;

 If (weight ≤ W AND price ≤ B) then

 Algo-back-track (X, i + 1) ;

 End if

 End for

 End if

End

Chapter 04 Backtracking

51

 Example

Consider a container of a maximum capacity W = 10, a budget B = 20 and a set of 4 items

whose values and weights are given in the table below.

Item id 1 2 3 4

Weight 5 3 3 2

Value 7 5 8 7

Note that:

– A1 = (0, 1, 1, 0) is a potential solution but not optimal since it includes only two

items.

– A2 = (1, 1, 1, 0) is not a solution because it is not a consistent evaluation as the

constraint on weight is not satisfied.

– A3 = (1, 1, 0, 1), A4 = (1, 0, 1, 1) and A5 = (0, 1, 1, 1) are optimal solutions with respect

to the number of contained items; it is possible to store them in a list. Even so, it

is possible to compare between these solutions by involving the total price and /

or the total weight of the chosen items, thus keeping the solutions with the smallest

total price and / or total weight.

4.4. Subset-sum problem

The subset sum problem is an important decision problem in complexity and cryptology

fields. The problem is described as follows: let S be a set of n integers: S = {s1, s2, .., sn}.

The goal is to find all subsets of set S whose elements sum is equal to a given integer d.

 Problem formulation

This is a CSP; thus, we need to specify the decision variables, their definition domain and

the constraints imposed on them.

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether element

si is considered for addition or not.

– Domain of definition of the decision variables: D (xi = 1.. n) = {0, 1}; if (xi = 1) then

element si will be considered for addition and quite the opposite for xi = 0.

– Constraint on the decision variables: C = {C1: ∑ si × xi = d n
 i = 1 }.

The pseudo-code below describes the steps of the corresponding backtrack algorithm,

according to the general scheme presented above.

Chapter 04 Backtracking

52

Global variables

Constant d ; S : Set of n integers ;

Algo-back-track (X : array [1 .. n] of integers, i : integer)

s, j : integer ;

Begin

 If (i = n + 1) then //X is a potential solution

 s ← ∑ 𝑠𝑗𝑥𝑗
n
𝑗=1 ;

 If (s = d) then //X is a solution

 End if

 Else

 For j ← 0 to 1 do

 X [i] ← j ;

 s ← ∑ 𝑠𝑗𝑥𝑗
𝑖
𝑗=1 ;

 If (s ≤ d) then

 Algo-back-track (X, i + 1) ;

 End if

 End for

 End if

End

 Example

Let consider a set S = {2, 4, 6, 10, 12} and given integer d = 12. Note that:

– A1 = (1, 0, 0, 0, 1) is not a solution because it is not a consistent evaluation as the

sum of elements is not equal d = 12.

– A2 = (1, 0, 0, 1, 0) and A3 = (1, 1, 1, 0, 0) are solutions. Even so, it is possible to

compare between the different solutions according to the cardinal of the resulting

subsets, thus keeping those with the smallest cardinal.

5. Improving the basic scheme of backtracking algorithms

Although backtracking easily iterates through all subsets or permutations of a set, their

efficiency requires pruning dead or redundant branches whenever it is possible. This is due

to the fact that CSP are often NP-complete. The general performances of the backtracking

procedure depends mainly on:

– Problem formulation as well as the resulting possible branches through which the

backtracking algorithm goes.

Chapter 04 Backtracking

53

– Representation of solutions regarding the order in which the nodes making up the

branches of solutions are visited (orders of the variables and values assignment).

Next, we show how to make improvements to the backtracking search process by

involving two techniques: anticipation and heuristics.

5.1. Anticipation

To improve the algorithm presented in section 2.2, one solution is to anticipate the

consequences of the partial evaluations under construction on the domains of the variables

which do not yet take values (empty variables). Indeed, we can check whether an empty

variable xi no longer has a value in its domain D (xi) so that it leads to a locally consistent

state (i.e. the current partial evaluation remains still consistent). If so, there is no need to

continue developing this branch, and therefore go back immediately to explore other

possibilities. One way to implement this principle is to filter, at each stage of the search

process, the domains of the unaffected variables by removing the "locally inconsistent"

values. Depending on the number of empty variables, filtering can be performed at

different levels of local consistency, which reduces more or less the domains of the

variables, but which also takes more or less time.

In summary, the principle of anticipation consists in modifying the backtracking algorithm

presented in Section 3, by simply adding a filtering step each time a value is assigned to a

variable, which detects and thus avoids conflicting assignments as early as possible.

5.2. Heuristics

The algorithm presented in Section 2.2 chooses, at each step, the next variable to instantiate

among the set of variables that are not yet instantiated; then, once the variable is chosen,

it tries to instantiate it according to its domain values. Thus, it does not say anything about

the order in which the variables should be instantiated, nor about the order in which the

values should be assigned to the variables. These two orders help considerably change the

efficiency of backtracking algorithms. Indeed, let imagine that, at each step, we have the

advice of a "know-it-all – oracle" who tells us which value to choose without ever making

a mistake; in this case, the solution would be found without ever turning back.

Unfortunately, satisfying a CSP on finite domains is generally an NP-complete problem;

thus, it is more than unlikely that this 100% reliable oracle could never be "programmed".

To deal with this issue, it is possible to rely on heuristics so as to determine the order in

which the variables and the values should be considered. A heuristic is an unsystematic

rule (in the sense that it is not 100% reliable) which gives us indications on the direction

to take in the state-tree. The heuristics concerning the order of instantiation of values

Chapter 04 Backtracking

54

depend generally on the considered problem and consequently are difficult to generalize.

On the other hand, there exist some heuristics to order the instantiation of variables which

very often helps speed up the search process. The general idea is to instantiate the most

"critical" variables first, i.e. those which are involved in many constraints and/or which

only take very few values. The order of instantiation of variables can be:

– static, if it is fixed before starting the search. For example, the variables can be

ordered according to the number of constraints relating to them. The idea is to

instantiate the most constrained variables first, i.e. those which are involved in a

large number of constraints.

– or dynamic, if the next variable to instantiate is chosen dynamically at each step

of the search. For example, the "first-fail" heuristic consists in choosing, at each

step, the variable whose domain has the smallest number of values locally

consistent with the current partial evaluation. This heuristic is often combined with

anticipation algorithms to filter the domains of the variables by keeping only the

values that satisfy a certain level of local consistency.

6. Advantages and drawbacks of the backtracking method

Backtracking algorithms have some advantages, including:

 Simplicity: backtracking algorithms are easier to describe and code than other

algorithms.

 Efficiency: the search for solutions by a backtracking algorithm is used to explore

a tree of choices in an adaptive way without the need to build it completely. This

is because the branches are built and destroyed as a result of moving forward and

moving backward (rollbacks), respectively.

 Performance: backtracking algorithms allow systematic checking of all potential

evaluations of the problem. This makes it possible to retain all potential solutions,

including the optimal solutions in the case of optimization problems.

Backtracking algorithms also have some drawbacks; we cite as examples:

 Algorithmic complexity: the search for a solution by a backtracking algorithm is

used to explore a tree of choices where it must sometimes be completely traversed.

This would highly increase the process cost in terms of time complexity, depending

on problems size.

 Difficulties induced by recursion: backtracking algorithms often lend

themselves to recursive writing. This may lead to high runtime stack usage and

resource overflow caused by recursive calls.

55

Chapter V: Probabilistic methods

Objective:

This chapter aims to present the principles, elements and theoretical basis of

probabilistic methods (randomized algorithms). In particular, it emphasize the

generation of pseud-random numbers due to their role in the design of randomized

algorithms. This chapter also discusses their categories as well as their implication

in solving some typical examples.

1. Deterministic algorithms vs probabilistic algorithms

An algorithm is said to be deterministic if the computation process always produces the

same output each time it receives the same input (i.e. the same data set). This is because the

algorithm always goes through the same sequence of states. In other words, only the

example to be solved and the description of the algorithm (i.e. the set of instructions)

determine the sequence of calculations performed, without resorting to other external

factors such as random variables.

Nevertheless, by only relying on determinism, certain restrictions or even constraints can

be imposed. Indeed, for some situations, one must relax the requirements by limiting

oneself to admitting approximate results. In this case, the execution of the algorithm

involves probabilistic choices guided by random selections (e.g. heads or tails of coin toss).

Hence, we talk about a probabilistic algorithm (non-deterministic or even stochastic) whose

execution uses a source of randomness by involving data obtained at random (random

variables). As a result, the computation process produces different outputs each time it

receives the same input due to the fact that it goes through various sequences of states.

In many situations, probabilistic algorithms are useful and can even be accurate. Let's take

the example of a box containing n bricks of which approximately 10% are of size 1×2.

Hence, we want to get a brick of size 1×2 by hand. By using a deterministic algorithm, we

check the bricks one by one until finding a sought brick. Indeed, with a bit of luck, it may

happen that no brick of size 1×2 is got on the first attempts, thus testing almost all the

bricks before managing to find the desired one. The time complexity of such an operation

is O (n). By relying on probabilistic algorithms such as the algorithms based on Las Vegas

or Monte Carlo approaches, it is possible to get a good answer with a higher probability.

Chapter 05 Probabilistic methods

56

2. Random and pseudo-random number generation

The simulation of a stochastic model requires the existence of a source of "random"

numbers in order to generate the values taken by the random variables involved in the

definition of the model. These numbers are generally generated according to a sequence

of random numbers U1, U2, … playing the role of uniform independent identically

distributed random variables over the interval [0, 1]. Such numbers can be obtained by

physical processes such as the lottery wheel and the lighting at irregular intervals of a disc

divided into 10 isometric sectors and numbered from 0 to 9.

However, in practice, we usually deal with pseudo-random numbers to designate random

numbers, which in fact play a similar role to real sequences of identically distributed

independent random variables.

2.1. Uniform distribution of numbers

Let a and b be two real numbers. The function uniform (a, b) returns a real number x

chosen randomly, uniformly and independently, such that a ≤ x < b.

Over integers i and j, uniform (i, j) returns a random integer k such that i ≤ k ≤ j, usually

with probability 1/(j – i + 1).

The link between uniform (integers) and uniform (reals) is that uniform integers (i, j) =

⌊uniform reals (i, j + 1)⌋.

On a non-empty finite set X, uniform (X) returns a randomly chosen element from X,

usually with probability 1 / |X|.

2.2. Algorithmic pseudo-random number generators

Pseudo-random numbers refer to random numbers that are able of being generated as a

random-looking sequence from a seed (known also as germ). A sequence of numbers is

said to be pseudo-random if it is generated deterministically but appears to have been

generated randomly. A pseudo-random number generator is an algorithm implemented by

a function which returns a new random numeric value on each call. The sequence of values

returned must have good statistical properties so that it can be considered as a sequence

of independent random variables with uniform distribution in a given interval.

Generally speaking, most algorithmic methods for generating pseudo-random numbers are

characterized by a (S, f, g), where:

– S is a finite set,

– f is an application from S to itself,

– g is a function from S over [0, 1].

Chapter 05 Probabilistic methods

57

The generator works by iterating over function f from an initial value s0 ∈ S, called seed or

germ, chosen by the user. Sometimes, the seed has to satisfy some constraints in addition

to being an element of set S. By noting (xn) n ≥ 0 as the list of successive values (between 0

and 1) returned by the generator, we have: xn = g (f ∘…. ∘ f (s0)).

In practice, the generator keeps in memory only its current state sn ∈ S, initialized by s0,

and updated during each new call by means of the recursive formula sn = f (sn-1); the value

returned is actually equal to g (sn). Thus, the choice of seed entirely determines the

sequence of the pseudo-random numbers produced by the generator. Once the seed is

chosen, nothing random remains in the functioning of the generator whose outputs are

nevertheless supposed to mimic independent random variables with a uniform law on [0,1].

2.3. Examples of pseudo-random number generators

2.3.1. The Von Neumann method

Proposed by Von Neumann in 1946, this pseudo-random number generator is known as

the middle-square method. It is considered as the first method for automatically generating

pseudo-random numbers. Today, it is very little used or even unused as several more

efficient techniques have emerged; thus, it is presented only for historical interest. The

principle of this generator is simple: choose a number, square it and finally take the digits

in the middle to generate a pseudo-random number. The result serves as a seed for

generating the next pseudo-random number. The pseudo-code below summarizes the

steps of this method.

Von Neumann's method for generating pseudo-random numbers

1. k ← initialize the seed of the generator with a random number of n digits ;

2. r ← k2 ;

3. If (number of digits of r < 2 × n) then

Pad with leading zeros until the number of digits of r becomes 2 × n ;

End if

4. r' ← extract the n middle digits of r ;

5. k ← r' ; // r' serves as a seed for generating the next pseudo-random number

6. Start from Step 2.

 Example

Consider the number 1111, hence n = 4.

1. (1111)2 = 01234321

Chapter 05 Probabilistic methods

58

2. We extract the n middle digits: 2343, which represents the output of the generator.

3. (2343)2 = 05489649

4. We extract the n middle digits: 4896 (the next pseudo-random number).

5. (4896)2 = 23970816

6. We extract the n middle digits: 9708.

7. … and so on.

Starting from seed 1111, the following sequence of pseudo-random numbers is generated:

2343, 4896, 9708, 2452, 0123, 0151, 0228, 0519, 2693, 2522, 3604, 9888, 7725, 6756, …

Although this method is simple in its writing, the period of the middle square is small. In

addition, the outputs may sometimes produce dead-ends thus constituting an absorbing

state of the algorithm (e.g. the sequence 0000).

2.3.2. Fibbonacci-based method

This method uses the Fibonacci sequence modulo M (the maximum desired value),

according to the recursive formula: xn = (xn-1 + xn-2) mod M; each term of the sequence is

the sum of the two terms which precede it modulo a given number M. It is therefore an

additive congruence. The value of M is fixed beforehand; likewise, the initial values x0 and

x1 are given as input so that they constitute a seed for generating the pseudo-random

numbers which follow.

 Example

Starting from numbers x0 = 1 and x1 = 2, and M = 100 as modulo, the resulting sequence

of pseudo-random numbers is as follows: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 44, 33, 77, 10, 87,

97, 84, 81, 65, 46, 11, 57, 68, 25, 93, 18, 11, 29, 40, …..

Although this generator is very simple to implement and consumes few resources, it

nevertheless shows a strong correlation between successive values.

2.3.3. The congruent linear method

It represents the most widely used algorithm for generating pseudo-random numbers; its

principle is based on a very simple recursive formula: xn+1 = (a×xn + c) modulo m. This

formula also allows making a jump of step k between the terms, as follows:

xn+k = (a × k × xn + (ak - 1) × c / (a - 1)) modulo m

 m : the modulo defining the largest value supported by this system (m > 0)

 a : the multiplier (0 ≤ a < m)

 c : the jump (the step) (0 ≤ c < m)

 x0 ∶ the starting value which actually represents the generator seed (0 ≤ x0 < m).

Chapter 05 Probabilistic methods

59

 Example

By using a seed x0 = 1, a multiplier a = 2, a jump c = 3 and a modulo m = 100, the resulting

sequence of pseudo-random numbers is as follows: 1, 5, 13, 29, 61, 25, 53, 9, 21, 45, 93,

89, 81, 65, 33, 69, 41, 85, 73, 49, 1, 5, 13, 29, …

2.4. Interests of algorithmic sources

Algorithmic methods for generating pseudo-random numbers are interesting for several

reasons, among which we cite:

– repeatability: once the seed has been chosen by the user (and stored), it is possible

to fully reproduce the sequence of pseudo-random numbers generated. This is very

important, for example, to check the results obtained by simulation or to debug

simulation codes.

– ease of use: in most implementations, the generation of pseudo-random numbers

is fast and without any limitation with respect to the number of calls to the

generator used.

– standardization: using a standardized procedure for generating pseudo-random

numbers allows having a reliable information on the quality and performance of

the contributions made by various researchers and users, in the form of scientific

publications and documentation.

2.5. Application fields of pseudo-random numbers

Pseudo-random numbers are used in various applications fields, among which we cite:

– Confidentiality of exchanges on wireless networks: confidentiality during

exchanges through a wireless network is a key aspect for protecting the security of

the data circulating. In this context, most protection mechanisms are based on

defining encryption keys of different lengths. These keys are specified at access

point and client level so that they create pseudo-random numbers used to encrypt

the transmitted data, and therefore ensure their confidentiality.

– Encryption systems: cryptanalysis ensures a high level of reliability regarding the

encryption methods adopted, in particular stream ciphers. The latter consists in

adding - bit by bit - to the clear message a pseudo-random binary sequence of the

same length.

– Simulation based on queuing theory: queuing theory is a mathematical theory

in the field of probability, which studies the optimal solutions for managing

queuing (queues). The incoming flows and service mechanisms are usually

simulated using pseudo-random numbers.

Chapter 05 Probabilistic methods

60

3. Categories of probabilistic algorithms

In classical algorithms, we are often interested in two important aspects:

– The correctness: does the algorithm return the correct result?

– Termination and complexity: does the algorithm always terminate and in how

many operations with respect to the inputs size?

In probabilistic algorithms (randomize algorithms), these aspects are probabilized.

Probabilization of the results affects the correctness of the algorithm in such a way that

the complexity is maintained with respect to the corresponding deterministic algorithm

(the execution time is the same for both algorithms) but not the result. In contrast, the

probabilisation of the termination affects the execution time in such a way that the

correctness of the result is maintained with respect to the corresponding deterministic

algorithm (the result is the same for both algorithms) but not the execution time. In the

following, four categories of randomized algorithms are presented along with explanatory

examples on their application to problem solving. In fact, this classification is a

controversial topic as some researchers and scholars claim that there are four classes

(numerical algorithms, Sherwood algorithms, Monte Carlo algorithms and Las Vegas

algorithms) while others consider only two (Monte Carlo algorithms and Las Vegas

algorithms) while attaching the other classes to these two classes.

3.1. Numerical algorithms

The answer of the algorithm is always approximate. However, its precision is all the better

on average as the time available to the algorithm is large. This class of algorithms is used

to approximate the solutions of numerical problems (e.g. calculating π, numerical

integration, etc.).

 Example: throwing darts at a square target (calculation of π)

The experiment consists of throwing n darts at a square target and counting the number k

of those falling inside the circle inscribed in this square. Let r denote the radius of the circle

(see Figure 5.1).

Figure 5.1. Square target of dimension 1× 1 cm.

Chapter 05 Probabilistic methods

61

If we randomly and uniformly choose a point p in the square, we ask ourselves what is the

probability that point p is in the circle. The answer is obvious: πr2 / 4r2 = π / 4.

Now, we choose n points randomly, uniformly and independently in the square, such that

the number of points in the circle is denoted by k, hence E (k) = nπ / 4. According to the

weak law of large numbers, we have: lim
n→∞

|k - E(k)| ≥ ε . It follows that: π ≈ 4k / n. This

experiment is simulated by the algorithm given below. The returned approximation of π is

all the better as n is large.

Function Darts (n : integer) : real.

Begin

k ← 0 ;

For i ← 1 to n do

 //Throw a dart

 x ← uniform (0, 1) ;

 y ← uniform (0, 1) ;

 //Check if it is in the circle

 If (x2 + y2 ≤ 1) then

 k ← k + 1 ;

 End if

End for

Return 4×k / n ;

End

3.2. Sherwood's algorithms

These algorithms always return an exact answer. For such an algorithm, there exists a

deterministic algorithm already known to solve the problem treated but which is much

faster on average than in the worst case. Thus, the use of randomness aims to reduce this

difference between good and bad cases.

 Example: search for the kth smallest element of an array of n elements.

The strategy of the probabilistic algorithm for finding the kth smallest element of an array

T of n elements consists in randomly choosing a pivot among the elements of array T, as

illustrated in the following pseudo-code.

Chapter 05 Probabilistic methods

62

Function Sherwood-selection (T [1 .. n]: array, k: integer): element from T

Begin

//Return the kth smallest element of T ; we assume that 1 ≤ k ≤ n

i ← 1 ;

j ← n ;

While (i < j) do

m ← T [uniform (i, j)] ;

//pivot around m: after this operation, the elements of T [i ..u -1] are all lower than

m, those of T [u .. v] are equal to m, and those of T [v+1 .. j] are greater than m

Partition (T, i, j, m, u, v) ;

If (k < u) then

j ← u - 1 ;

Else

If (k > v) then

i ← v + 1 ;

Else

i ← k ;

j ← k ;

End if

End if

End while

Return T [i] ;

End

3.3. Monte Carlo algorithms

These algorithms always return an answer but not always right, i.e. they always give an

answer that is not always accurate. This is why it is very difficult to determine whether the

answer obtained is correct or not. The probability of success of these algorithms in terms

of correct answer is all the better as the time available to them is large.

 Example: majority table problem

Let T [1 .. n] be an array of n elements. An element x is said to be majority in array T if

and only if the number of elements whose values are equal to x is greater than n / 2.

Similarly, array T is said to be majority if it contains a majority element. The probabilistic

Chapter 05 Probabilistic methods

63

algorithm for performing this task is given below. This algorithm is 1/2 correct and true-

biased with X = {T / T is not majority}.

Function majority (T [1 .. n]: array): Boolean

Begin

//draw an item x at random

i ← uniform (1, n) ;

x ← T [i] ;

// count the number k of elements equal to x

k ← 0 ;

For j ← 1 to n do

If (T [j] = x) then

k ← k + 1 ;

End if

End for

Return (k > n/2);

End

A call to function majority on array T leads to two possible results. In the case where the

function return true, array T is actually a majority (i.e. function majority is true-biased).

Otherwise, we cannot draw a conclusion but probability (x is in the minority | T is

majority) = (1 - p) < 1/2.

3.4. Las Vegas Algorithms

They never return an incorrect answer but they may not find an answer. Randomness is

thus restricted to the internal control of the calculation and in no way affects the result.

These algorithms can also solve some problems for which no efficient deterministic

algorithms are known.

The main element of a probabilistic nature attached to such an algorithm is typically its

execution time. The usual definition of a Las Vegas algorithm is that only the expectation

of the computation time is finite; the execution time is random. Therefore, the answer is

always correct and probably fast. The probability of success of such an algorithm is all the

better as the time available is large. The probability of a failure can be made arbitrarily small

(close to 0) by repeating the algorithm often enough.

Chapter 05 Probabilistic methods

64

 Example: N-Queens problem

The strategy of the adopted probabilistic algorithm consists in placing the queens randomly

on successive lines while making sure that the queens already placed are not in conflict

with each other. With the following algorithm, if variable success = true then array

trial [1 .. nb-queens] contains the solution, as illustrated in the pseudo-code below.

Algorithm place-queens-LV (nb-queens: integer)

trial, ok : array [0 .. nb-queens] of integer ;

cols, diag-45, diag-135 : set ;

nb : integer ;

Begin

success ← true ;

initialize arrays trial and ok with zeros ;

initialize sets cols, diag-45 and diag-135 to ∅

For k ← 1 to nb-queens do

nb ← 0 ;

For j ← 1 to nb-queens do

If ((j ∉ cols) and ((j - k) ∉ diag-45) and ((j + k) ∉ diag-135) then

nb ← nb + 1 ;

ok [nb] ← j ;

End If

End for

If (nb > 0) then

j ← ok [uniform (1, nb)] ;

cols.add (j) ;

diag-45.add (j - k) ;

diag-135.add (j + k) ;

trial [k] = j ;

else

success ← false ; break ;

End if

End for

Return [success, trial] ;

End

Chapter 05 Probabilistic methods

65

4. Advantages and drawbacks of randomized algorithms

Randomized algorithms have some advantages over deterministic algorithms, including:

 Simplicity: randomized algorithms are known for their simplicity to understand

and implement. Moreover, many deterministic algorithms are easily convertible

into randomized algorithms.

 Performance: randomized algorithms are very efficient compared to deterministic

algorithms. Indeed, for many problems, a randomized algorithm is the simplest,

the fastest, or even both.

 Time and space complexity: several randomized algorithms use little execution

time and space compared to deterministic algorithms. This is because they exhibit

superior asymptotic bounds, which makes their complexity better than that of the

corresponding deterministic algorithms.

Randomized algorithms also have some drawbacks; we cite as examples:

 Reliability: this is an important issue in many applications, as not all randomized

algorithms always give correct answers. Moreover, some randomized algorithms

may not terminate. Therefore, reliability concerns should be handled carefully.

 Quality: the quality of randomized algorithms depends heavily on the quality of

the random number generator used as part of the algorithm.

 Lack of design paradigm: unlike other paradigms, randomized algorithms do

not rely on a single design principle. Hence, it would be better if we came to think

of randomized algorithms as those designed using a set of clear principles.

66

Chapter VI: Approximation algorithms

Objective:

This chapter aims to give an overview of approximation algorithms while

highlighting their principles, elements and theoretical foundation. It also discusses

their application aspects for solving several typical examples.

1. Solving NP-complete optimization problems

An optimization problem is a problem for which there exists a set of potential solutions

among which one must select the optimal solution. Optimization problems can be either a

maximization or a minimization of a cost function (see the formal definition of an

optimization problem in Section 1 of Chapter 1).

The difficulty of solving an optimization problem depends on its complexity class. In

particular, problems belonging to the NP-complete class are the most difficult. This is due

to the fact that NP-complete problems do not admit algorithms that run in polynomial

time, in order to find solutions. Indeed, although any solution of an NP-complete problem

can be verified quickly (in polynomial time), to date, there is no efficient method to find

such a solution. A classic example of NP-complete problems is the traveling salesman

problem, whose goal is to determine the shortest paths to visit a large number of cities.

Depending on the instance size of a given optimization problem, there are three main

solving-methods:

– The exact resolution: although this option allows finding the optimal solution to

the problem treated, this is generally done while knowing a priori that the cost is

most likely exponential in time. An example of such an approach is the exhaustive

search through brute force algorithms.

– Heuristic resolution: according to which we build a solution at a lower cost,

hoping that it shows good performances. However, there is no guarantee on the

quality of the result obtained. An example of such a solving-approach is greedy

algorithms.

– Guaranteed resolution: a solution is built at a lower cost so that its quality can be

measured and is therefore guaranteed: approximation algorithms that we present

and discuss throughout this chapter.

Chapter 06 Approximation algorithms

67

2. Overview on approximation algorithms

2.1. Basic idea of approximation algorithms

Approximation algorithms deal with NP-complete optimization problems. An

approximation algorithm does not guarantee retaining the optimal solution but rather it

allows getting a solution as close as possible to the optimum in a reasonable time. Some of

the features of approximation algorithms are summarized as follows:

– They guarantee to run in polynomial time though they do not guarantee getting the

most effective solutions.

– They are used to get an answer near the optimal solution. In addition, the quality

of the retained solutions can be measured.

– They guarantee to seek out high accuracy and top quality solutions.

Polynomial complexity and bounded approximation factor are two desired properties for

NP-problems. On the one hand, we can always calculate an optimal solution by

enumerating all possible solutions but, unfortunately, the computation cost is often

exponential in time in accordance with the growth of problems size; this has relatively little

interest in practice. On the other hand, being able to say something about what the

algorithm produces and guaranteeing an approximation factor regardless of the instances

size are also two important criteria for approaching the optimal solution. This is because it

is always possible to quickly calculate a solution arbitrarily far from the optimum (for

example, by drawing it at random). It is important to differentiate between an

approximation algorithm and a heuristic, especially since they both provide approximate

solutions. The former is a polynomial time algorithm with some degree of guarantee while

the latter does not necessarily satisfy these two features.

2.2. Notations

In what follows, we use the notations given below to provide definitions and formulas.

– Π: an NP-complete optimization problem

– I: an instance of problem Π.

– A (Π, I): the solution obtained for instance I of problem Π using algorithm A.

– OPT (Π, I): the optimal solution for instance I of problem Π.

– COST (SOL (Π, I)): returns the objective function value for a given solution SOL

to instance I of problem Π.

– LB (Π, I): a lower bound on COST (OPT (Π, I)) for instance I of minimization

problem Π.

Chapter 06 Approximation algorithms

68

– UB (Π, I): an upper bound on COST (OPT (Π, I)) for instance I of maximization

problem Π.

2.3. Performance ratio (approximation factor)

Let A be an algorithm that deals with a given problem Π. A is a λ-approximation if:

1. It runs in polynomial time in accordance with instances size.

2. It always produces a solution which is, at worst, λ times worse than OPT (Π, I).

For a minimization problem Π, we have: ∀ I , COST (A (Π, I)) ≤ λ × COST (OPT (Π, I))

For a maximization problem Π, we have: ∀ I , COST (A (Π, I)) ≥
1

λ
 × COST (OPT (Π, I))

λ is called approximation factor (λ ≥ 1 and λ = 1 for optimal algorithms).

We say that a given approximation factor λ is non-improvable if for each ε > 0, there exists

no instance I of problem Π such that COST (A (Π, I)) ≤ (λ - ε) × COST (OPT (Π, I)).

 Example

Consider a minimization problem Π and an algorithm A to solve it. By considering three

instances I, I' and I'', the table below provides the optimal solutions, the solutions retained

by algorithm A as well as the approximation factors λ.

Instance Optimal solution Retained solutions by A Approximation factor λ

I 3 6 2

I' 8 12 1.5

I'' 6 8 1.33

 Question: how to compare with an optimal solution that - by definition - we do not

know how to calculate in a reasonable time?

Overall, it is often difficult to prove that a given algorithm results in a good approximation

factor and thus produces a good output. However, what is more important in particular is

that the optimum should not be much better. In fact, it is not always possible to figure out

what the optimum should be. In this case, we have to prove lower/upper bounds on the

optimal solution. Most often, these bounds are obtained from the problem structure but

sometimes the solving-method helps as well.

Let I be an instance of a problem Π and A be an algorithm. We have:

∀ I , COST(A (Π, I)) ≤ λ × LB(Π, I) ⇒ (∀ I , COST(A (Π, I)) ≤ λ×COST(OPT (Π, I)) ∧

Algorithm A is an approximation algorithm of factor λ) [for a minimization problem Π].

∀ I , COST(A (Π, I)) ≤
1

λ
 × UB(Π, I) ⇒ (∀ I , COST (A (Π, I)) ≤

1

λ
×COST(OPT (Π, I)) ∧

Algorithm A is an approximation algorithm of factor λ) [for a maximization problem Π].

Chapter 06 Approximation algorithms

69

2.4. Approximation schemes

Let A be an approximation algorithm for problem Π and ε, c ∈ ℝ+ be two constants.

Algorithm A is polynomial time if its time complexity is polynomial in the number of

inputs. In contrast, an algorithm is considered as pseudo-polynomial time (PPT) if its

worst-case time complexity is polynomial in the numeric value of input (e.g. counting

frequencies of all elements in an array). If problem Π can be solved by a pseudo-polynomial

time algorithm A, then it is called weakly NP-complete (solving the knapsack problem

using dynamic programming is a good example); otherwise, it is called strongly NP-

complete, unless complexity class P = complexity class NP.

Algorithm A is said to be polynomial-time approximation scheme (PTAS) if for any given

instance I of problem Π, approximation factor λ = (1+ε) for minimization and λ = (1 - ε)

for maximization. ε is a parameter that denotes the upper or lower bound of the quality of

A (Π, I) relative to OPT (Π, I). Thus, the difference between COST (OPT (Π, I)) and

COST (A (Π, I)) must not exceed ε for all possible instances of problem Π. By assigning a

value to ε, algorithm A must run in polynomial time poly (|I|).

Likewise, algorithm A is said to be PTAS with absolute performance guarantee if for any

given instance I of problem Π, [COST (A (Π, I)) - COST (OPT (Π, I))] ≤ c for minimization

and [COST (OPT (Π, I)) - COST (A (Π, I))] ≤ c for maximization. This means that A (Π,

I) is at most c worse than OPT (Π, I), in terms of objective function value (the cost

function).

Finally, although a PTAS algorithm runs in polynomial time in accordance with n (size of

a given instance I of problem Π), the time complexity may grow exponentially with respect

to ε. For instance, approximation algorithms running in O (n

1

ε) or O (2

1

ε) are still PTASs.

To address this issue, fully polynomial time approximation scheme (FPTAS) is used to

study a class of PTAS algorithms that run in polynomial time according to both n and
1

𝜀

poly (n,
1

𝜀
), e.g. O (

n α

ε β) with α, β ≥ 1. Intuitively, this is a guarantee that an increase of

problem size n or an increase of approximation quality
1

𝜀
 does not affect the runtime more

than polynomially.

2.5. Classification of approximation algorithms

Depending on approximation factor equation, approximation algorithms can be classified

into (see Figure 6.1):

– PPTA = optimization problems admitting a pseudo-polynomial time algorithm.

Chapter 06 Approximation algorithms

70

– APX = optimization problems admitting an approximation algorithm running in

polynomial time with a constant performance ratio.

– PTA = optimization problems admitting a PTAS

– FPTA = optimization problems admitting an FPTAS

Unless complexity class P = complexity class NP, it holds that FPTA ⊆ PTA ⊆ APX.

Figure 6.1. Classification of approximation algorithms.

2.6. Hardness of approximation

Unless complexity class P = complexity class NP, many computational problems are not

only difficult to solve but also difficult to approximate for any given approximation factor.

They are said to be non-approximable; the traveling salesman problem is a good example.

Consider a problem Π and an instance I with the goal of proving that problem Π is α (|I|)

hard to approximate (|I| represents the size of instance I). Hence, we use two well-known

methods: gap-introducing reduction and gap-preserving reduction.

 Gap-introducing reduction

It aims at reducing an NP-complete decision problem Π' to problem Π. Let Π' be a decision

problem and Π be a minimization problem (similar for maximization). A reduction h from

problem Π' to problem Π is said to be gap-introducing if:

1. It transforms each instance I' of problem Π' to an instance I = h (I') of problem

Π, in polynomial time.

2. There exist functions f and α such that:

If instance I' is a "yes instance" of problem Π' then OPT (Π, I) ≤ f (I)

Chapter 06 Approximation algorithms

71

If instance I' is a "no instance" of problem Π' then OPT (Π, I) > α (|I|) × f (I)

Theorem (proof not included). If problem Π' is NP-complete then problem Π cannot

be approximated with a factor α.

 Gap-preserving reduction

It reduces a problem Π' that is hard to approximate to problem Π. Let Π' and Π be

minimization problems (similar for maximization). A reduction h from problem Π' to

problem Π is said to be gap-preserving if:

1. It transforms each instance I' of problem Π' to an instance I = h (I') of problem

Π, in polynomial time.

2. There exist functions f, f', α, β such that:

OPT (Π', I') ≤ f' (I') ⇒ OPT (Π, I) ≤ f (I)

OPT (Π', I') > β (|I'|) × f' (I') ⇒ OPT (Π, I) > α (|I|) × f (I)

Theorem (proof not included). If problem Π′ is non-approximable with a factor β then

problem Π cannot be approximated with a factor α unless P = NP.

Generally speaking, proving the hardness of approximation results requires considerable

knowledge of the characteristics of problems. Even so, there are a few broad methods used,

among which we cite:

1. Use already existing hardness results and gap reductions to get hardness results for

new problems.

2. Amplification: some problems exhibit self-reducibility even in the sense of

approximation. This allows using a given hardness factor to something larger.

3. Use probabilistically checkable proofs (PCPs) and other sophisticated tools such as

the parallel repetition theorem which establish gap reduction for some basic CSPs

(constrain satisfaction problems).

3. Classic examples

In what follows, we show some examples of approximation algorithms application to solve

typical problems while measuring the quality of the solutions retained.

3.1. Graph-coloring problem

The graph-coloring problem consists in determining the smallest number of colors needed

to color the vertices of a graph, such that the vertices of each edge cannot have the same

color. A coloring of the vertices of a given graph G = (V, E) can be seen as a function

c : V → ℕ, such that c (u) ≠ c (v) if u and v are connected by an edge in G. The pseudo-

code below determines a coloring which is not necessarily minimal.

Chapter 06 Approximation algorithms

72

For each u ∈ V do

Color vertex u with the smallest color not appearing on an adjacent vertices ;

End for

Let us apply this algorithm to graph G = (V, E) where V = {1, 2, …, 2n} such that each

odd vertex i is connected to all even vertices j except i+1. Figure 6.2 illustrates a typical

graph with n = 4.

Figure 6.2. A typical a graph with 2n nodes (n = 4).

The adopted algorithm uses n colors whereas two colors are enough. If we denote by

OPT(G) the minimum number of colors necessary and by A(G) the number of colors used

by the above algorithm, then: λ =
𝐴 (𝐺)

OPT (G)
 =

𝑛

2

3.2. Traveling salesman problem

3.2.1. Approximation algorithm for the determination of Hamilton cycles

In this version of the traveling salesman problem, we are interested in determining a

Hamilton cycle (i.e. passing exactly once through each vertex) of minimum length in a

complete graph G. Suppose that the distance matrix satisfies the triangular inequality, i.e.

distance (x, z) ≤ distance (x, y) + distance (y, z) for any triplet of vertices x, y, z. A non-

optimal solution can be determined using the algorithm illustrated below (see Figure 6.3

that shows a typical example of a complete graph with five vertices).

1. Determine a minimum cost tree in G.

2. Determine a cycle that passes exactly twice through each edge of the tree.

3. Shorten this cycle if necessary to pass through each vertex only once.

Chapter 06 Approximation algorithms

73

Figure 6.3. Steps for the determination of Hamilton cycle of minimum length.

We denote by OPT (G) the length of the smallest Hamilton cycle in G and by A (G) the

length of the cycle produced by the above algorithm. It is proven that, as the minimum cost

tree has a cost lower than or equal to OPT (G): λ =
A (G)

OPT (G)
 ≤ 2

3.2.2. Non-approximation results in the traveling salesman problem

Let G (V, E) be a complete graph and w: E → ℕ be a weight function. Thus, it is asked to

find a tour that has minimum total weight which is in fact an NP-hard problem.

Theorem. According to this definition, the traveling salesman problem does not admit an

approximation algorithm of any approximation factor α in polynomial time in n (number

of vertices), unless P = NP.

To prove the approximation hardness, we rely on a gap-introducing reduction from

Hamilton cycle (a cycle using each vertex only ones) due to the fact that the determination

of whether a given graph G' has a Hamilton cycle or not is NP-complete. The idea is to use

the proof by absurd starting from the assumption that there is an α-approximation

algorithm A, as shown in Figure 6.4.

Figure 6.4. Steps for proving the non-approximation of the traveling salesman problem.

Let's build a polynomial algorithm A deciding Hamilton cycles.

Adding weights: based on graph G (V, E), we define G' (V, E) as a complete graph such

that w (e) = 1 if e ∈ E, otherwise w (e) = 1 + α × n (n = |V|) with α ≥ 0.

– If graph G' admits an optimal tour of cost n (i.e. OPT (G') = n) then graph G

admits a Hamilton cycle.

Chapter 06 Approximation algorithms

74

– If graph G' admits a tour of cost ≤ α × n, then graph G admits a tour of cost n.

Likewise, if graph G' admits a tour of cost > α × n, then graph G does not admit a

tour of cost n.

Clearly, unless P = NP, algorithm A cannot be a polynomial algorithm, and therefore

cannot be an α-approximation.

3.3. Vertex cover problem

This problem consists in modeling and solving a system for which it is asked to place a

minimum number of guards to monitor all the corridors. To this end, one generally involve

graph theory where a cover of vertices must be calculated.

Let G = (V, E) be a graph. A vertex cover is a subset C ⊆ V such that for each (u, v) ∈ E,

u ∈ C or v ∈ C (see Figure 6.5).

Figure 6.5. A typical graph illustrating a vertex cover.

Solving this problem can be done through the naive algorithm below; Figure 6.6 gives the

result of its execution on a typical graph.

Naïve algorithm

C ← ∅ ;

E' ← E ;

While (E' ≠ ∅) do

e ← the first element of set V \ C;

E' ← E' ∪ {edges a = (u, v) / u = e or v = e with a ∉ E'} ;

C ← C ∪ {e} ;

End while

Chapter 06 Approximation algorithms

75

Figure 6.6. Execution result of the naïve algorithm on a typical graph.

Now, we proceed to an approximation algorithm, in order to solve this problem. This

algorithm is based on the concept of coupling in graph theory. Thus, we first introduce

some definitions that would help to better understand the adopted approximation

algorithm. Let G = (V, E) be a graph.

– A set M ⊆ E is a matching if for any vertex u ∈ V, there exists at most one edge

(a, b) ∈ M with u = a or u = b. One can easily show that |M| ≤ |C|, for any

matching M and any vertex cover C.

– A matching M is maximum if for each matching M' we have |M'|≤ |M|.

– A maximal matching for inclusion is a matching M such that for each M' ⊆ E,

M ⊆ M' implies that M' is not a matching. It is demonstrated that a maximum

matching for cardinal is maximum for inclusion.

Figure 6.7. Typical examples of maximal matching for inclusion.

The approximation algorithm is described by the following pseudo-code:

Approximation algorithm for vertex cover

M ← a maximal matching for inclusion ;

C ← {vertices of the edges of M} ;

Return C ;

Chapter 06 Approximation algorithms

76

It is proven that the result C returned by the approximation algorithm is a vertex cover. It

is also proven that this algorithm admits an approximation of factor λ = 2, as illustrated in

the graphs illustrated in Figure 6.8.

Figure 6.8. Typical examples of vertex cover.

3.4. Bin packing problem

Let L = {l1, l2, …, ln} be a list of n items of sizes [s1, s2, …, sn] respectively in such a way

that 0 < si = 1 .. n ≤ 1. We also assume an infinite supply of bins such that the size of each

unit is 1. The aim is then to pack the items of list L using as few bins as possible. This is an

NP-complete optimization problem. There are two versions to this problem depending on

how the elements arrive and are placed in bins.

– Online version: this version assumes that the items arrive sequentially one by one

in an unknown order. Thus, each item must be put in a bin before considering the

next item.

– Offline version: all items of list L are given in advance.

The online version of this problem would be more difficult since it does not always lead to

the optimal solution. For instance, let consider a list L of n = 2 × m items: m small items

of size 0.5 - ε and m large items of size 0.5 + ε. The optimal solution consists in packing

the items as pairs (small item, large item), thus leading to use m bins. However, in the online

version of the problem, there is no knowledge about the future items as well as the way in

which they will arrive; this makes it difficult to build an optimal solution. Indeed, with a bit

of luck, the small items may arrive before the larger ones. In this case, we will need about

of 3/2 m bins to pack all items according to their arrival (the small items are packed before

the large ones). In what follows, we present simple approximation algorithms for both

online and offline versions of the problem. To measure the performance of a given

approximation algorithm A, we denote by A (L) and OPT (L) the number of bins used when

algorithm A is applied to list L and the optimal number for list L, respectively.

Chapter 06 Approximation algorithms

77

3.4.1. Approximation algorithms for the online version of the problem

We consider three well-known online algorithms in the literature that use at most twice the

optimal number of bins. These algorithms use the following general scheme.

While (not end of items arrival) do

//carry out a capacity check of the bins already open

If (the new item can be packed in one of the bins already open) then

1. put it in one of these bins;

else

2. open a new bin to pack the new item;

End if

End while

The considered algorithms differ in the criterion used to choose the open bin for packing

the new item in step 1, as follows:

 Next-fit strategy (NF): the NF strategy always keeps the last used bin open to

check whether it is suitable for packing the new item or not. If so, the new item is

packed, which only results in a decrease in the remaining capacity of the bin.

Otherwise, a new bin is opened while the last one is closed. Note that NF can be

generalized to w-NF by keeping the w last bins open (sliding window of size w

through the bins used). NF is simple as it requires a linear time O (n) and a bounded

space O (1) (it only keeps a single open bin in memory). Moreover, it is proven that

NF admits an approximation of factor λ =
𝑁𝐹 (𝐿)

OPT (L)
 ≤ 2 (i.e. 2-approximate). Indeed,

if k is the optimal number of bins, then NF never uses more than 2×k bins. In

particular, there exist sequences that force NF to use 2×k - 2 bins.

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The NF algorithm uses 5 bins to pack

the items as follows: bin1(l1, l2), bin2(l3), bin3(l4, l5), bin4(l6) and bin5(l7).

 First-fit strategy (FF): this strategy can be seen as an improvement of the NF

algorithm by keeping all used bins open in the order in which they were opened,

until the packing task is finished. Thus, FF scans the bins in an attempt to pack the

new item in the first bin that fits. Otherwise, a new bin is opened in order to pack

the new item. The FF requires O(n2) time which is reduced to O(n Log n) using

proposer data structures (self-balancing binary search trees) and O(n) for space

complexity (it keeps all bins in memory). It is proven that FF admits an

Chapter 06 Approximation algorithms

78

approximation of factor λ =
𝐹𝐹 (𝐿)

OPT (L)
 ≤ 1.7. Indeed, if k is the optimal number of

bins, then FF never uses more than 1.7 × k bins.

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The FF algorithm uses 4 bins to pack

the items as follows: bin1(l1, l2, l5), bin2(l3, l6), bin3(l4) and bin4(l7).

 Best-fit strategy (BF): this strategy also keeps all used bins open until the packing

task is finished. The BF scans the bins in an attempt to pack the new item in the

tightest spot (i.e. the bin with a remaining capacity close as much as possible to the

item size). Otherwise, a new bin is opened in order to pack the new item. Similarly

to FF algorithm, the BF requires O(n2) time that can be reduced to O(n Log n)

using self-balancing binary search trees and O(n) for space complexity (it keeps all

bins in memory). It is proven that BF admits an approximation of factor λ =

𝐵𝐹 (𝐿)

OPT (L)
 ≤ 1.7. If k is the optimal number of bins, then BF never uses more than

1.7×k bins.

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The BF algorithm uses 4 bins to pack

the items as follows: bin1(l1, l2, l5), bin2(l3), bin3(l4, l6) and bin4(l7).

3.4.2. Approximation algorithms for the offline version of the problem

By considering that all items of list L are known in advance, it is expected to do better.

Exhaustive enumeration (e.g. through backtracking algorithms) is the best way to find the

optimal solution. However, there is no efficient algorithm that solves this problem in a

polynomial time due to NP-completeness. One way to overcome some of the difficulties

caused by online algorithms is to sort the input sequence of items before packing them in

bins, as given in the pseudo-code below.

1. Sort list L according to a descending order of items size.

2. Apply an online algorithm on the sorted list L.

Next, we present the algorithms discussed in the previous section (i.e. NF, FF and BF) in

the context of the offline version of bin packing problem, as follows:

 Next-fit-decreasing (NFD): the NFD first sorts list L according to a descending

order of items sizes and then call the NF algorithm. It is proven that NFD admits

an approximation of factor λ slightly less than 1.7 in the worst case.

 First-fit-decreasing (FFD): the FFD first sorts list L according to a descending

Chapter 06 Approximation algorithms

79

order of items sizes and then call the FF algorithm. It is proven that FFD admits

an approximation of factor FFD (L) =
OPT (L)×11 + 6

9
.

 Best-fit-decreasing (BFD): the BFD first sorts list L according to a descending

order of items sizes and then call the BF algorithm. It is proven that BFD admits

an approximation of factor FFD (L) ≤
OPT (L)×6

5
 + 1.

3.5. 0/1 Knapsack problem

Consider a knapsack that can hold up to a maximum weight W ∈ ℕ and a set of n objects

X = {x1, ..., xn}, each associated with a weight (xi) ∈ ℕ and a value (xi) ∈ ℕ. For each

subset S ⊆ X, we define weight (S) = ∑ weight (x) x ∈ S and value (S) = ∑ value (x) x ∈ S .

The goal is to find a subset S ⊆ X that maximizes objective function value (S) without

exceeding the knapsack capacity W (i.e. weight (S) ≤ W). It should be noted that the greedy

algorithm shown in Section 4.3 in chapter 1 represents a 2-approximation algorithm. Thus,

in the following, we present only the (1-ε)-approximation algorithm.

The knapsack problem admits a PPT algorithm based on dynamic programming with time

complexity O (n × V*); n is the number of objects in set X while V* is their maximum value

(i.e. value (X)). Note that n × Vmax is a bound on the optimal solution; such that

Vmax = max
𝑖 = 1 .. 𝑛

value (xi). As a result, the time complexity is O (n2 × Vmax).

We define matrix M [1..n +1, 1..V* +1]; for each 0 ≤ i ≤ n and 0 ≤ v ≤ V*, the

corresponding recursive formula is given as follows:

M [i, v] = {

+∞ if i = 0 or v = 0

M [i-1, v] if v < value (xi)

min (M [i-1, v], weight (xi) + M [i-1, v- value (xi)]) otherwise

An entry M [i, v] is the minimum weight of objects from subset {x1, ..., xv} such that the

value is exactly v. In the case where there is no such subset, M [i, v] = +∞. The optimal

solution OPT (M) = max
0 ≤ v ≤ V*

{p / M [n, v] ≤ W}.

The recursive formula shows that each entry M [i, v] only depends on previous entries (i.e.

it is calculated in bottom-up) which means that OPT (M) is determined afterwards.

However, V* can be arbitrarily large which means that the runtime is polynomial as long as

V* is polynomial in n. Therefore, we need for an FPTAS algorithm that runs in polynomial

time in n while being independent of V*. To do so, we rely on the adopted PPT that serves

Chapter 06 Approximation algorithms

80

as a subroutine for the approximation algorithm. The idea consists in downscaling the

profits to polynomial size as required by the error parameter ε, as given in the pseudo-code

below. It is proven that the time complexity of the FPTAS is O (
n 3

ε
).

Function approximation-knapsack (ε: real): subset of set X

Begin

k ← ε × Vmax / n;

Redefine function value so that value (xi = 1 .. n) becomes ⌊value (xi = 1 .. n) / k⌋;

Use dynamic programming to get solution S' for the new instance of the problem;

Return S';

End

4. Advantages and drawbacks of approximation algorithms

Approximation algorithms have some advantages, including:

 Problem analysis: the design of approximation algorithms requires analyzing

problems which makes it possible: to highlight the variations in difficulty between

them, to distinguish the easy cases of problems from those difficult and to help

design effective and practical heuristics.

 Time complexity: approximation algorithms run in polynomial time, which

significantly reduces the time complexity compared to the corresponding exact

algorithms that generally run in exponential time.

 Guarantee: although approximation algorithms do not allow necessarily finding

the optimal solutions, the approximation factor λ is nevertheless a proven guarantee

since the solution is at most λ times worse than the optimal solution.

Approximation algorithms also have some drawbacks; we cite as examples:

 Difficulty of approximation: the determination of a good approximation is often

carried out by making several proofs, which requires a strong mathematical

background and formal demonstrations.

 Complexity estimation: unlike other algorithmic paradigms (e.g. integer

programming), there is often no incremental/continuous tradeoff between running

time and solution quality.

 Approximation quality: for some problems, the approximation factor still

remains large while for others, it is impossible to admit an approximation scheme.

81

Exercises set 1 (Greedy algorithms)

Exercise 1: shortest superstring problem

Let S = {s1, s2, …, sn} be a set of n strings such that no element si is a substring of another

sj. It is asked to devise a greedy algorithm that attempts to find the shortest superstring

containing each element si ∈ S as a substring.

Example

Let consider S = {"TCADOG", "GTAAGT", "DOGTA", "TTCA", "AGTCTTC"}.

Thus, str1 = "TCADOGTAAGTCTTCA" and str2 = "TTCADOGTAGTAAGTCTTC"

are two potential solutions. However, str1 is better as it is shorter than str2.

Exercise 2: job-sequencing problem with deadlines

Let consider a uniprocessor machine and a set of n tasks X = {t1, t2, …, tn} with deadlines

d1, d2, …, dn. Each task ti takes one unit and it cannot run beyond its deadline (i.e. it must

end before deadline di). When a given task ends before its deadline, it earns a profit pi. The

objective is to try to find a task scheduling that maximizes the sum of profits.

Example

Let consider a system composed of 10 tasks, as follows:

Tasks (ti) t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Deadlines (di) 9 2 5 7 4 2 5 7 4 3

Profits (pi) 15 2 18 1 25 20 8 10 12 5

A possible jobs schedule is as follows: t7, t6, t9, t5, t3, t4, t8, t1; the total profit earned is 109.

Exercise 3: activity selection problem

Let A = {a1, a2, …, an} be a set of n activities such that each activity is characterized by

its starting and finishing time. The objective is to try to find the maximum number of

activities performed by a single person assuming that a person can only work on a single

activity at a time.

Example

Let consider a set of 11 activities such that the following pairs give their starting and

finishing time: a1 (1, 4), a2 (3, 5), a3 (0, 6), a4 (5, 7), a5 (3, 8), a6 (5, 9), a7 (6, 10), a8 (8, 11),

a9 (8, 12), a10 (2, 13), a11 (12, 14).

A potential solution is to select: a1 (1, 4), a4 (5, 7), a8 (8, 11), a11 (12, 14).

82

Exercise 4: bookshelves problem

A library is planning to redo its bookshelves. It includes a collection of books bi = 1..n. Each

book bi has a width wi and a height hi. The books should be stored on shelves of length L.

Let assume that the books should be arranged in an unspecified order by considering only

their heights and widths. The objective is to write two greedy algorithms that return the

number of required bookshelves for the arrangement of books in order to:

1. minimize the number of shelves necessary while caring only about books widths.

2. minimize the books clutter which is defined as the sum of the heights of the largest

book in each shelf used (without worrying about books widths).

Example

Let consider a set of 8 books to be arranged in bookshelves of length L = 10. The following

pairs give their heights and widths, respectively: b1 (25, 3), b2 (26, 2), b3 (27, 3), b4 (30, 2),

b5 (30, 1), b6 (25, 4), b7 (29, 3), b8 (24, 1). The order of books that minimizes the number

of required bookshelves would be: b6, b1, b3, b7, b2, b4, b5, b8 (2 bookshelves) while the

order that minimizes the books clutter would be: b4, b5, b7, b3, b8, b2, b1, b6 (2 bookshelves

and a books clutter of 56).

Exercise 5: train platforms problem

Consider a station for which the arrival and departure of trains are scheduled. Thus, it is

asked to write a greedy algorithm that attempts to determine the minimum number of

platforms so that there will be no delays in trains' arrivals.

Example: let consider trains arrival = {2:00, 2:10, 3:00, 3:20, 3:50} and departure = {2:30,

3:40, 3:20, 4:30, 4:00}. The minimum number of platforms needed is 2 (see the table below)

Event Time Platform id

Arrival 2:00 1

Arrival 2:10 2

Departure 2:30 1

Arrival 3:00 1

Departure 3:20 1

Arrival 3:20 1

Departure 3:40 2

Arrival 3:50 2

Departure 4:00 2

Departure 4:30 1

83

Exercises set 2 (Divide-and-conquer)

Exercise 1: minimum-maximum in an array

Let consider an array A of n integers. Using the divide-and-conquer paradigm, write:

1. an algorithm to find the index of the largest element in A. Calculate its time complexity.

2. an algorithm that performs the simultaneous search for the smallest and largest elements

in array A (it returns their indices). Calculate its time complexity.

Exercise 2: modified binary search in a sorted array

Let T [1..n] be an array of distinct integers sorted in ascending order, some of which may

be negative. Using the divide-and-conquer paradigm, write an algorithm that returns an

index i such that T [i] = i, assuming that such an index exists. Calculate its time complexity.

Exercise 3: median in two sorted arrays

Let A [1..n] and B [1..n] be two arrays sorted in ascending order. We seek to find the median

element of these two arrays (element which has as many strict greater elements as lower or

equal elements), using the divide-and-conquer paradigm. Calculate its time complexity.

Exercise 4: inversions in an array

Consider an array of n positive integers A = [a1, a2, …, an]. We say that pair (i, j) is an

inversion of A if (i < j) and (ai > aj). For example, array A = [2, 6, 3, 1, 5] has 5 inversions:

(1, 4), (2, 3), (2, 4), (2, 5) and (3, 4).

1. Write a naive algorithm to determine the number of inversions of array A. Calculate its

time complexity.

2. By relying on the divide-and-conquer paradigm, write an algorithm to determine the

number of inversions of array A. Calculate its time complexity.

Exercise 5: integer power

I) Let A and n be two integers such that n ≥0. We want to calculate the value of power An.

1. Write a simple recursive function to calculate An. Calculate its time complexity.

2. We define the value of power An as follows:

An = {

1 if n = 0

An = An/2 × An/2 when n is even (n = 2×k)

A2k+1 = A × An/2 × An/2 when n is odd (n = 2×k + 1)

84

Use the divide-and-conquer paradigm to write a recursive function that performs the

requested calculation. Calculate its time complexity.

3. Now, the value of power An is defined as follows:

An = {

1 if n = 0

A2k = (𝐴2)𝑘 when n is even (n = 2×k)

A2k+1 = A×(𝐴2)𝑘 when n is odd (n = 2×k + 1)

Use the divide-and-conquer paradigm to write a recursive function that performs the

requested calculation. Calculate its time complexity.

II) Let F be a function that depends on an integer n ≥ 0 and an integer constant v0 > 0,

defined as follows:

1. Give the result of execution of function F for:

n = 3 and v0 = 2

 n = 3 and v0 = 3

2. What does function F calculate? A demonstration is requested.

3. Determine the number of multiplications m (n) performed by function F(n).

4. Calculate the time complexity of function F(n).

5. Show how it would be possible to improve the time complexity. Give the time

complexity of the proposed solution.

Function F (n : integer) : integer

Begin

 If (n = 0) then

 Return (v0) ;

 Else

 Return F (n - 1) × F (n - 1) × …. × F (n - 1) ;

 End if

End

v0 times

85

Exercises set 3 (Dynamic programming)

Remark.

For all the exercises in this set, the aim is to solve problems using dynamic programming.

Thus, it is asked to give:

1. The recursive formula leading to efficient problem solving.

2. The structure of the array of results as well as the initial values of its cells.

3. The pseudo-code to fill in the array of results.

Exercise 1: Fibonacci sequence

The Fibonacci sequence is defined by the following recursive formula:

Fn = {

F0 = 1

F1 = 1

Fn-1 + Fn-2 when n > 1

The aim is to calculate the nth term of the Fibonacci sequence.

Exercise 2: maze problem

A maze is modeled by a matrix t of size n × p containing only 0s and 1s, as shown in the

figure below. The 0s represent empty spaces while the 1s represent inaccessible cells.

Moves can be down, right and across the diagonal. The objective is to find the shortest

path to get out.

Exercise 3: edit distance calculation (Levenshtein distance)

The edit distance aims to measure the similarity between two strings. A classic use-case of

edit distance is when a search engine returns the same result for two entered keywords (e.g.

"dynamic" and "dymanic"). Three elementary operations on words are considered:

86

– substitution: one letter is replaced by another,

– insertion: a new letter is added,

– deletion: a letter is deleted.

The edit distance between two words U and V is then the minimal number of operations

to transform U into V. For instance, on the word decay, if we substitute y for d and insert

e after d, we get the word decade. We can demonstrate that this number of operations is

minimal and that the distance from decay to decade is therefore 2: one substitution and

one insertion. Thus, it is asked to provide a solution to this problem.

Exercise 4: largest independent set in a graph

Let G = (V, E) be a directed graph where V = {v1, v2, …, vn} is a set of n vertices (nodes)

and E is the set of edges between the vertices such that each edge has a non-negative

length. A subset X ⊆ V is said to be independent if, for any pair of vertices x, y ∈ X, (x, y)

∉ E (i.e. no pair of vertices in X share an edge). Therefore, we are interested in finding an

independent set of maximum size using dynamic programming.

Exercise 5: longest palindromic subsequence

Let S = c1c2 … cn be a sequence of n characters. It is asked to find the length of the longest

palindromic subsequence in sequence S.

Example

Let S1 = WEEKSFORWEEKS and S2 = MMAMCMCAM be two characters sequences.

The longest palindromic subsequence of S1 is 5. There are more than palindromic

subsequences of length 5 (e.g. EEWEE, EEREE, etc.).

Regarding sequence S2, the longest palindromic subsequence is 7 corresponding to

MAMCMAM. Subsequences MMMMM and MMCMM in sequence S2 are also

palindromic but not the longest ones.

87

Exercises set 4 (Backtracking)

Remark.

For all the exercises in this set, the aim is to solve CSPs using backtracking algorithms

according to the basic scheme. Thus, it is asked to give:

1. The problem formulation by specifying the decision variables, their domains of

definition and the constraints imposed on them.

2. The pseudo-code describing the steps of the backtracking algorithm.

Exercise 1: all possible strings made by placing spaces

Let S be a string for which it is asked to generate all possible strings made by placing zero

or one space between its characters.

Example

Consider S = "xyz", the set of all possible strings is: {"xyz", "xy z", "x yz", "x y z"}.

Exercise 2: tug of war

Let S be a set of n integers. We seek to divide set S into two subsets of size n/2 each so

that the absolute value of the difference of the elements sum of each subset is as minimum

as possible. Note that in the case where n is odd, one subset is of size (n - 1)/2 while the

other subset is of size (n + 1)/2.

Example

Consider S = {3, 4, 5, -3, 100, 1, 89, 54, 23, 20} where n = 10. Note that subsets S1 = {4,

100, 1, 23, 20} and S2 = {3, 5, -3, 89, 54} represent an optimal solution as they are both of

size 5 and the sum of their elements is the same (148 in both cases).

Exercise 3: Maximum number possible using at most K swaps

Let M and K two positive integers. We seek to find the maximum integer possible by using

at most K swap operations on its digits.

Example

– For M = 6945 and K = 1, the output is 9645 (swap 9 with 6).

– For M = 5488 and K = 2, the output is 8854 (swap 8 with 4 so number becomes

5884, then swap 5 with 8 so number becomes 8854).

– For M = 96541 and K = 1, the output is 96541 (no swap is required).

88

Exercise 4: knight tour problem

Let consider a knight that is placed on the first block of an empty board. The knight moves

according to chess rules so that it must visit each square exactly once. Thus, we seek to

find all solutions such that for each solution, we keep track of all movements through

which the knight goes.

Example

The table below shows a typical path that a knight follows to cover all cells of a chessboard

of 8 × 8. Numbers in the cells indicate the order by which they were visited by the knight.

Exercise 5: Sudoku

Let consider a 2D array of size 9×9 which is partially filled. The goal is to assign digits

(from 1 to 9) to the empty cells so that each row, column, and sub-grid of size 3×3 contains

exactly one instance of the digits from 1 to 9.

Example

Initial state Final state (correct solution)

89

Exercises set 5 (Probabilistic methods)

Exercise 1: fair and biased random values

I) Let foo() be an algorithmic function that represents a biased coin such that when called,

it returns 0 or 1 with 60% and 40% probabilities, respectively. Based only on function

foo(),write a new function new-foo-50() that returns 0 or 1 with 50% probability each.

II) Now, let assume that foo() represents a fair coin (i.e. when called, it returns 0 or 1 with

equal probability of 50% each). Based only on function foo(), write a new function new-

foo-25-75() that returns 0 or 1 with 25% and 75% probabilities, respectively.

Exercise 2: numerical integration

Let f: [0, 1] → [0, 1] be a continuous function. Therefore, we want to estimate the value of

∫ f(x) dx
1

0
 which is actually a measure of the area under the curve y = f (x), as shown in

the figure below. Write a pseudo-code of a randomized algorithm that returns the

estimated value of this numerical integration.

Exercise 3: randomness on array elements and indices

I) Let A = [a1, a2, …, an] be an array of n elements. It is asked to write a pseudo-code of

an algorithm that generates a random permutation of the elements of array A (i.e.

randomize array A). This problem is also known as "shuffle a deck of cards". In this

context, the term "shuffle" implies that each permutation of the elements of array A

should be equally likely.

Example

Let consider A = [1, 2, 3, 4, 5, 6, 7, 8]. One possible output would be: [8, 7, 4, 6, 3, 1, 2, 5].

II) Let A = [a1, a2, …, an] be an array of n elements. It is asked to write a pseudo-code of

a randomized algorithm that finds the most occurring element of array A and returns any

one of its indices randomly with equal probability.

90

Example

Let A = [-1, 4, 9, 7, 7, 2, 7, 3, 0, 9, 6, 5, 7, 8, 9]. Element with maximum frequency is: at

index 7, OR at Index 4, OR at index 5, OR at index 13. All these outputs have equal

probability.

Exercise 4: search in a compact sorted list

A compact list is a list whose elements are compressed into an array. For this purpose, we

use two arrays V [1..n] to store the elements of the list and P [1..n] to keep track of the

chaining pointers between the elements of the list in addition to an integer variable t to

locate the head of the list. The keys of the list elements are sorted in ascending order

without necessarily being sorted in array V, i.e. V [t] < V [P [t]] < V [P [P [t]]] < … etc.,

but not necessarily V [1] < V [2] < V [3] < … etc.

Write a randomized function position (x, CL) which returns the position of an element x

in a compact sorted list CL in array V. Note that binary search cannot be applied since the

middle of the list cannot be located.

Example

The table below represents the compact sorted list CL whose elements are: (1, 2, 3, 5, 8,

13, 21) with t = 4 (the head of the list). Position (13, CL) = 3, Position (2, CL) = 1.

i 1 2 3 4 5 6 7

V [i] 2 3 13 1 5 21 8

P [i] 2 5 6 1 7 0 3

Exercise 5: calculation of the median value in an array

Let A = [a1, a2, …, an] be an array of n elements. Write a pseudo-code of a randomized

algorithm that calculates the median value in array A (i.e. element at position n/2 if array

A is sorted), using the Monte Carlo method.

Example

Let consider A = [12, 3, 8, 13, 5, 18, 9, 11, 1, 12, 6, 17, 11]. The median value is 11; its

position is 11 if array A is sorted.

91

Exercises set 6 (Approximation algorithms)

Remark.

For all the exercises in this set, we deal with NP optimization problems. Therefore, we

want to write approximation algorithms guaranteeing good approximation factors.

Exercise 1: set-covering problem

Let A = {e1, e2, …, en} be a set of n elements and S = {s1, s2, …, sm} be a collection of

m subsets of A such that each subset si has a given cost ci. The objective is to find a sub-

collection of S with a minimum cost while covering all elements of A.

Example

Let A = {1, 2, 3, 4, 5} and S = {s1, s2, s3} such that: s1 = {1, 3, 4} with cost c1 = 5, s2 =

{2, 5} with cost c2 = 10 and s3 = {1, 2, 3, 4} with cost c3 = 3. There are two possible sub-

collections covering the elements of A: {s1, s2} with total cost 15 and {s2, s3} with total

cost 13. Thus, sub-collection {s2, s3} has a minimum cost 13.

Exercise 2: k-centers problem

Let G = (V, E) be a complete undirected graph where V = {v1, v2, …, vn} is a set of n

vertices (nodes) and E is the set of edges between the vertices such that each edge has a

non-negative length (distance between associated vertices). The objective is to select a

subset X ⊆ V of k vertices to place warehouses in such a way that the maximum distance

of a vertex to a warehouse is minimized.

Example

Consider V = {0, 1, 2, 3}; the edges and distances between vertices are given in the figure

below. Thus, it is asked to place 2 warehouses among these 4 vertices so that the maximum

distance of a vertex to a warehouse is minimized. The two warehouses should be placed in

vertices 2 and 3. In this case, the maximum distance of a vertex from a warehouse is 6.

Exercise 3: minimum Steiner tree of a graph

Let G = (V, E) be a connected, weighted and undirected graph, and R ⊆ V be a subset of

required vertices (terminals).

92

The goal is find a minimum Steiner tree of graph G which is a tree of minimum weight

while containing all vertices of set R (it may or may not contain the remaining vertices).

Example

Let consider the graph given in the figure below where R = {2, 3, 4} is a subset of required

vertices. The minimum Steiner tree includes the edges set E' = {(1, 2), (1, 3), (1, 4)}.

Exercise 4: maximum subset sum

Let S = {v1, v2, .., vn} be a set of n positive integers. The goal is to find a subset of set S

whose elements sum is as large as possible without exceeding a given integer d (the optimal

solution is the sum which approaches d as much as possible).

Example

Let S = {2, 3, 5, 7} and d = 11.

One possible solution is subset S1 = {2, 7} with elements sum equal to 9. There are two

optimal solutions with elements sum equal to 10: Sopt1 = {3, 7} and Sopt2 = {2, 3, 5}.

Exercise 5: load balancing

Let M = {m1, m2, .., mk} and T = {j1, j2, .., jn} be a set of k machines and n jobs such that

the processing time of each job ji is ti. The goal is to assign each job to a machine such that

the makespan is minimized. The makespan is defined as the largest total processing time

of a machine.

Example

Let consider a set M = {m1, m2, m3} composed of three machines. The table below gives

the considered jobs and their processing times.

Jobs (ji) j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

Processing times (ti) 3 4 2 3 1 6 4 4 3 2 1 5

The optimal solution consists in assigning jobs (j1, j2, j3, j4, j5) to m1, jobs (j6, j7, j9) to m2

and jobs (j8, j10, j11, j12) to m3 with a makespan of 13.

93

References

Remark. All liks were consulted on july 20, 2023.

1. Amiar Lotfi. Méthodes algorithmiques. Course handout. University of Oum El Bouaghi.

2. Various online articles published for GeeksforGeeks (a computer science portal for geeks

developed by Sandeep Jain in 2009) and available at: https://www.geeksforgeeks.org/.

3. Various online articles published for Wikepedia and available at: https://www.wikipedia.org/.

4. Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner. Algorithmes gloutons (2018).

Université des sciences en ligne. Chapter available at:

https://ressources.unisciel.fr/algoprog/s35techn/emodules/gl00macours1/res/gl00cours-

texte-xxx.pdf.

5. Pierre Béjian. MATROIDES ET ALGORITHMES GLOUTONS : UNE

INTRODUCTION (2003). Chapter available at:

http://pauillac.inria.fr/~quercia/documents-info/Luminy-2003/beijan/matroide_papier.pdf

6. Souad Aroussi. Algorithmes gloutons (2013). University of Blida. Chapter available at:

https://sites.google.com/a/esi.dz/informatiqueblida/

7. Ana Busic. Conception d'algorithmes et applications. Chapter available at:

www.di.ens.fr/~busic/cours/LI325/slidesCAAC8_1213.pdf

8. Coding Freak. Top 7 Greedy Algorithm Problems (2018). Online article published for

Techie Delight and available at: https://medium.com/techie-delight/top-7-greedy-

algorithm-problems-3885feaf9430.

9. Sylvie Hamel. Algorithmes diviser-pour-régner. University of Montréal. Chapter available at:

http://www.iro.umontreal.ca/~hamelsyl/AlgosDiviser_pour_regner.pdf.

10. Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner. Paradigme diviser pour

régner (2018). Université des sciences en ligne. Chapter available at:

https://ressources.unisciel.fr/algoprog/s35techn/emodules/dr00macours1/res/dr00cours-

texte-xxx.pdf.

11. R. Lelouche. DIVISER POUR RÉGNER. Chapter available at:

http://www2.ift.ulaval.ca/~bherer/Transparents_Ch07.pdf

12. Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner. Programmation dynamique

(2018). Université des sciences en ligne. Chapter available at:

https://ressources.unisciel.fr/algoprog/s35techn/emodules/dy00macours1/res/dy00cours-

texte-xxx.pdf.

https://www.geeksforgeeks.org/
http://pauillac.inria.fr/~quercia/documents-info/Luminy-2003/beijan/m
http://www.di.ens.fr/~busic/cours/LI325/slidesCAAC8_1213.pdf
https://medium.com/techie-delight/top-7-greedy-algorithm-problems-3885feaf9430
https://medium.com/techie-delight/top-7-greedy-algorithm-problems-3885feaf9430
https://ressources.unisciel.fr/algoprog/s35techn/emodules/dr00macours1/res/dr00cours-texte-xxx.pdf
https://ressources.unisciel.fr/algoprog/s35techn/emodules/dr00macours1/res/dr00cours-texte-xxx.pdf

94

13. Manuel Lafond. Algorithmes et structures de données. Course notes, University of

Sherbrooke.

14. R. Lelouche. PROGRAMMATION DYNAMIQUE. Chapter available at:

http://www2.ift.ulaval.ca/~bherer/Transparents_Ch08.pdf.

15. DESIGN AND ANALYSIS OF ALGORITHMS (Lecture notes B.TECH III YEAR).

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous

Institution – UGC, Govt. of India)

16. Steven Skiena. Backtracking. Department of Computer Science, State University of New

York Stony Brook, NY 11794–4400.

17. Soni Upadhyay. What is Backtracking Algorithm? Types, Examples & its Application

(updated 2023). Online article published and available at:

https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm

18. Christine SOLNON. Résolution de CSPs. Online chapter available at:

https://perso.liris.cnrs.fr/christine.solnon/Site-PPC/session3/e-miage-ppc-

sess3.htm#grd3

19. James Aspnes. Notes on Randomized Algorithms (2023). Course notes availble at:

http://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf

20. Robert Cori. Algorithmes probabilistes. Online presentation available at: http://denif.ens-

lyon.fr/data/concept_analyse_algo_x/2007/cours/cours7.pdf

21. R. Lelouche. ALGORITHMES PROBABILISTE. Chapter available at:

http://www2.ift.ulaval.ca/~bherer/Transparents_Ch10.pdf.

22. François Schwarzentruber. Algorithmes d'approximation (2021). Chapter availble at:

http://people.irisa.fr/Francois.Schwarzentruber/algo2/03approximation.pdf.

23. Frédéric Vivien. Algorithmes d'approximation. Online course available at:

https://www.youtube.com/watch?v=g-NLgxhCW-A

24. S. Le Digabel. Algorithmes d'approximation (2018). Ecole Polytechnique de Montréal.

Chapter available at:

https://www.gerad.ca/Sebastien.Le.Digabel/MTH6311/9_algos_approx.pdf

25. Subhash Suri. Approximation Algorithms (2021). Chapter available at:

https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking

26. Cyril Gavoille. Analyse d’Algorithme (2022). Course notes available at: https://dept-

info.labri.fr/~gavoille/UE-AA/cours.pdf

27. Aris Pagourtzis. Approximation Algorithms. Online presentation available at:

https://courses.corelab.ntua.gr/pluginfile.php/2328/course/section/362/approximation.pd

f

http://www2.ift.ulaval.ca/~bherer/Transparents_Ch08.pdf
https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm
https://perso.liris.cnrs.fr/christine.solnon/Site-PPC/session3/e-miage-ppc-sess3.htm#grd3
https://perso.liris.cnrs.fr/christine.solnon/Site-PPC/session3/e-miage-ppc-sess3.htm#grd3
http://www2.ift.ulaval.ca/~bherer/Transparents_Ch10.pdf
http://people.irisa.fr/Francois.Schwarzentruber/algo2/03approximation.pdf
https://www.youtube.com/watch?v=g-NLgxhCW-A
https://www.gerad.ca/Sebastien.Le.Digabel/MTH6311/9_algos_approx.pdf
https://sites.cs.ucsb.edu/~suri/cs130b/BinPacking
https://dept-info.labri.fr/~gavoille/UE-AA/cours.pdf
https://dept-info.labri.fr/~gavoille/UE-AA/cours.pdf
https://courses.corelab.ntua.gr/pluginfile.php/2328/course/section/362/approximation.pdf
https://courses.corelab.ntua.gr/pluginfile.php/2328/course/section/362/approximation.pdf

