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number of situations. Among these methods, this course focuses on famous principles of 

greedy methods, divide and conquer algorithms, dynamic programming, backtracking 

algorithms, probabilistic methods and approximation algorithms. The objective is to 

give an overview of these paradigms in as simple and clear a manner as possible while 

exposing their theoretical foundations and elements as well as how to apply them to the 
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Chapter I: Greedy methods 

 

Objective: 

This chapter aims to present the paradigm of greedy methods and to show some 

of their application aspects to solve certain typical examples. This chapter also 

discusses some elements of the greedy strategy as well as the theoretical 

underpinnings of this problem-solving paradigm. 

 

1. Optimization problems 

1.1. Definition 

An optimization problem is characterized by a non-empty set of admissible solutions X 

and an objective function f (also called cost function) which associates to each solution 

𝑠 ∈ 𝑋 a value f (s). Solving an optimization problem consists in finding a solution 𝑠∗ ∈ 𝑋 

which optimizes (i.e. which maximizes or minimizes) the value of cost function f. In this 

case, solution 𝑠∗ is called optimal solution. In some cases, the optimum is not unique, but 

rather a set of solutions optimizing the desired objective. 

1.2. Methods for solving optimization problems 

Generally, methods for solving optimization problems are divided into two main families:  

 Exact methods: they allow finding the optimal solutions. However, time 

complexity often increases exponentially with the growth of the solutions space 

size; this makes this type of resolution unsuitable for large problem instances. 

 Approximate methods: they do not necessarily allow obtaining optimal solutions 

for a given problem but rather to seeking solutions close to the optimum within a 

reasonable execution time. They belong to two subfamilies: 

– Methods without guarantee: they build solutions at a lower cost without 

any guarantee of their quality, hoping that they will perform well. We 

distinguish two types of solving-methods: heuristics, which are used in 

solving specific problems and meta-heuristics, which designate a general 

framework for solving several classes of optimization problems. 

– Methods with guarantee: they allow building solutions whose quality is 

guaranteed at a lower cost: approximation algorithms (see chapter 6). 
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2. Overview on greedy algorithms 

2.1. Principle of the greedy method 

In many situations, solving an optimization problem involves building a solution gradually 

such that at each step, a certain number of choices are made. In other words, starting from 

an incomplete solution, the resolution process works to complete it step by step, where at 

each step, we deal with some of the variables over which we no longer return (i.e. by 

making definitive choices). In this way, the greedy principle builds a solution in an 

incremental manner where at each step, the most promising direction (i.e. the choice which 

seems the best at that time) is taken by following very simple rules. At each step, only one 

datum is considered without worrying about the consequences in the future, and without 

going back. Thus, this principle consists in making a locally optimal choice in the hope that 

it will lead to the globally optimal solution. By doing so, a local choice leads to an analogous 

sub-problem of smaller size. 

Although a local choice seems the best in the short term, it nevertheless does not always 

lead to a globally optimal solution. In other words, local optimality does not necessarily 

lead to global optimality. Consequently, a greedy method generates a solution according to 

two possible scenarios. In the case where the short-term view always leads to an optimal 

solution – and this is the ideal situation, one refers to exact greedy algorithms. Otherwise, 

one refers to heuristic greedy algorithms which only lead to sub-optimal solutions; they 

are used in the lack of an efficient exact algorithm. More generally, if we consider the search 

for a solution to a given problem as an exploration within a choice tree, the greedy method 

builds one and only one branch of the tree which, in the end, may correspond or not to an 

optimal solution. A greedy method never calls itself into question and moves as quickly as 

possible towards a solution. Blinded by its excessive appetite, the greedy principle does not 

guarantee arriving at an optimal solution, but it provides a result quickly. 

2.2. General scheme 

A greedy algorithm aims to find the best solution to an optimization problem, as much as 

the adopted strategy allows it. Each solution s is constructed using the elements of a finite 

set E according to different ways that depend on the problem to be solved (e.g. subset of 

E, permutation of elements of E, etc.). The algorithm maintains a set of successful and 

rejected candidates. The evaluation of the quality of each solution s is made according to 

an objective function f (s). 
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The pseudo-code below presents the general scheme of the greedy method. It is based on 

a local criterion for selecting the elements of Set E to build a potentially optimal solution. 

To do so, it manipulates a set of abstract methods as follows: 

- initialize: it builds the initial partial solution by choosing some elements from E. 

- select: it selects the current best element of Set E with respect to the greedy 

criterion. 

- isComplete: it checks whether a partial solution sol is a complete solution without 

taking into account the optimality aspect. 

- canAdd: it checks whether a given element e can be added to a partial solution sol 

so that the result still remains a partial solution. 

- add: it adds an element e from Set E to a partial solution sol. 

Input : set E of the elements of the solution 

Output : solution Sol 

Begin 

Cand.initialize (E) ; // initialize object Cand using the candidates of set E 

Sol.initialize (Cand) ; // initialize object Sol using certain initial elements of Cand 

While (not Sol.isComplete () AND Cand.candidateExist ()) do 

       e ← Cand.select () ; // select element e according to the greedy criterion 

       If (Sol.canAdd (e)) then 

             Sol.add (e) ; //add element e to the partial solution Sol 

       End if 

       If (certain conditions that depend on the problem-solving) then 

             Cand.remove (e) ; //remove e from Cand in order to be processed once 

       End if 

End while 

Return Sol ; 

End 

As in any other general scheme, the scheme presented above shows advantages and 

drawbacks. Indeed, in some cases, it is even simpler. For example, when the solution 

sought is a permutation, in general the algorithm may be reduced to a sorting task 

according to the greedy criterion. In other cases, the solutions are a bit more complicated 

and therefore schemes that are more sophisticated are required. 
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2.3. Elements of the greedy strategy (proof of optimality) 

A greedy algorithm produces a solution after making a sequence of choices, where at each 

decision point, it retains the choice that seems best at that time. Even so, by proceeding in 

this way, the algorithm does not always succeed in determining the optimal solution. There 

are two properties such that when they are checked, the problem-solving lends itself to a 

greedy strategy: the greedy choice property and the optimal substructure property. 

(a) Greedy choice property: there always exists an optimal solution constructed by 

making a locally optimal first choice (a first element). In general, we demonstrate 

that any optimal solution contains or starts with this first greedy choice. 

 

Figure 1.1. Greedy choice property. 

(b) Optimal substructure property: every optimal solution contains an optimal 

substructure. A greedy algorithm makes a locally optimal choice and then solves the 

sub-problems that arise. Thus, the solving-problem progresses downwards by 

making successive greedy choices that iteratively reduce each instance of the 

problem to a smaller instance. As a result, once property (a) is proven, the optimal 

solution is determined by showing that it consists in the combination of the greedy 

first choice with an optimal solution of the underlying sub-problem. 

 

Figure 1.2. Optimal substructure property. 
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3. Classic examples 

Now, we present typical cases of greedy methods applications. Thus, we consider a set of 

typical problems whose resolution helps deal with other problems either by a direct 

projection or by a partial adaptation. 

3.1. Minimum coin change problem 

This problem is formulated as designing an algorithm to give change to a customer with 

as few coins as possible. More precisely, given an amount to be paid and an amount given 

by the customer; it is asked to find the smallest combination of coins that makes up the 

difference. One possible solution to this problem is to use a greedy strategy as follows: 

1. Sort the coins in descending order of their values. 

2. For each type of coin, if the value of this coin is lower than or equal to the 

difference between the amount to be paid and the amount given by the customer, 

add a coin of this type to the solution and subtract its value from the difference. 

3. Repeat from step 2 until the difference becomes zero. 

 Problem formalization 

– Input: an amount M to be returned using a currency system S = (p1, p2, …, pn) in 

which each type of coin pi is characterized by a value xi. For example, let consider 

the currency system S = (p1, p2, p3, p4) whose values xi = 1..4 are (5 DZD, 10 DZD, 

50 DZD,100 DZD). 

– Solution: a solution consists in calculating the numbers of coins to be returned to 

the customer, denoted by ki = 1..n, according to the coin types pi = 1..n ∈ S, 

respectively. We assume that for each value xi, the number of coins is unbounded. 

– Constraint: sum of the returned coins must be equal to M; M = ∑ ki × p
i

 n

 i = 1
. 

– Objective function: minimize the number of coins returned: ∑ ki
 n
 i = 1 . 

 Example 

We want to return an amount M to a customer with a minimum number of coins according 

to the following hypotheses. 

M = 80.70 DZD. 

S = {p1 = 50 DZD, p2 = 20 DZD, p3 = 10 DZD, p4 = 5 DZD, p5 = 50 c, p6 = 20 c, p7 

= 10 c} 

Solution: Sol = 1 × 50 DZD + 1 × 20 DZD + 1 × 10 DZD + 1 × 50 𝑐 + 1 × 20 𝑐 where: 

ki = 1..7 = (1, 1, 1, 0, 1, 1, 0) and therefore ∑ ki
 n
 i = 1  = 5 coins in total. 
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The greedy algorithm for this example goes through the following steps: 

– Take coin pi with the largest value xi ≤ 80.70. Therefore, the algorithm chooses p1 

whose value x1 = 50 DZD so that the rest becomes 30.70. 

– Likewise, take coin pi with the largest value xi ≤ 30.70. Therefore, the algorithm 

chooses p2 whose value x2 = 20 DZD so that the rest becomes 10.70. 

– And so on. 

However, this greedy strategy does not guarantee optimality; let consider the following 

example: 

M = 80 DZD. 

S = {p1 = 50 DZD, p2 = 40 DZD, p3 = 10 DZD} 

The adopted strategy produces solution Sol = 1 × 50 DZD + 3 × 10 DZD where: 

ki = 1..3 = (1, 0, 3) and thus ∑ ki
 n
 i = 1  = 4 coins in total. 

An optimal solution could be solopt = 2 × 40 DZD where: 

ki = 1..3 = (0, 2, 0) thus ∑ ki
 n
 i = 1  = 2 coins in total. 

3.2. Minimum spanning tree in a graph 

The minimum spanning tree problem is a well-known problem in graph theory. It consists 

in finding the spanning tree of an undirected and weighted graph whose total weight is the 

smallest possible. Figure 1.3 represents an illustrative example of an undirected and 

weighted graph. 

 

Figure 1.3. A typical undirected and weighted graph. 

A spanning tree of a graph is a sub-graph which is a tree (i.e. a connected and acyclic graph) 

covering all the vertices of the initial graph. To find the minimum spanning tree of a given 

graph, there are two well-known greedy algorithms: Prim's algorithm and Kruskal's 

algorithm. 
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3.2.1. Prim's algorithm 

Prim's algorithm is guided by the following principle: 

1. Pick an arbitrary vertex from the graph and add it to the spanning tree. 

2. Find the minimum-weight edge that connects a vertex in the spanning tree to a 

vertex that is not yet in the spanning tree, and add it to the spanning tree. 

3. Repeat from step 2 until all vertices of the graph are in the spanning tree. 

The result of running this algorithm on the previous example is illustrated in Figure 1.4. 

 

Figure 1.4. The resulting minimum spanning tree using Prim's algorithm. 

The pseudo-code below describes the steps of Prim's algorithm. 

Prim's algorithm 

Input: G = (X, E)  a connected graph with positive edge weighting 

Output: T = (A, E' )  a spanning tree of minimum weight 

A : Set of marked vertices 

E' : Set of tree edges 

Begin 

Initialize E' to the empty set ; 

Arbitrarily mark a vertex x such that A = {x} ; 

While (there is an unmarked vertex adjacent to a marked vertex) do 

Select an unmarked vertex y adjacent to a marked vertex x such that (x, y) 

is the smallest weight outgoing edge ; 

E' ← E' U {(x, y)} ; 

Mark y ; // A ← A U {y} 

End while 

Return T = (A, E' ) ; 

End 
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The idea of Prim's algorithm is based on the fact that at each step we choose the edge of 

minimum weight which connects a vertex from the spanning tree to a vertex which is not 

yet in the spanning tree. This edge is therefore necessarily an edge of the minimum 

spanning tree. By gradually adding these minimum-weight edges to the spanning tree, one 

finally builds the complete minimum-weight spanning tree. 

3.2.2. Kruskal's algorithm 

Kruskal's algorithm is another classic algorithm for solving the minimum spanning tree 

problem in an undirected and weighted graph. It consists of the following steps: 

1. Sort all edges of the graph in ascending order of weight. 

2. Loop through the sorted edges in order, and add each edge to the spanning tree if 

it does not lead to generating a cycle. 

3. Repeat from step 2 until all edges of the graph have been traversed. 

The result of running this algorithm on the previous example is illustrated in Figure 1.5. 

 

Figure 1.5. The resulting minimum spanning tree using Kruskal's algorithm. 

The pseudo-code below describes the steps of Kruskal's algorithm. 

Kruskal's algorithm 

Input: G = (X, E)  a connected graph with positive edge weighting 

Output: T = (X, E' )  a spanning tree of minimum weight 

Begin 

sort the edges of G in ascending order of weight; // we note them as [e1, …, em] 

Initialize E' to the empty set ; 

For i ← 1 to m do 

If (E' ∪ {ei} does not contain cycles) then 

E' ← E' ∪ {ei} ; 

End if 

End for 

Return T = ( X, E' ) ; 

End 
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The idea of Kruskal's algorithm is based on the fact that at each step, we add to the 

spanning tree the edge of minimum weight which does not create a cycle. And as the edges 

of minimum weight are added gradually to the spanning tree, we finally build the complete 

minimum spanning tree. 

In terms of time complexity, Kruskal's algorithm is slightly more efficient than Prim's in 

some cases, because it does not require calculating distances between vertices at each step. 

However, it requires sorting all the edges of the graph, which can be computationally 

expensive for large graphs. 

3.3. The 0/1 knapsack problem 

Informally, the knapsack problem is described as a choice among n items, those which are 

the most profitable, knowing that the sack has a limited capacity C. In its simplest version, 

namely the one-dimensional binary knapsack problem (0/1), it is asked to select a subset 

of items in order to maximize the total profit knowing that each item ti is characterized by 

a weight wi and a profit pi. One way to solve that problem is to use a greedy strategy as 

follows: 

1. Sort the items in descending order of the values of ratio pi / wi. 

2. For each item ti, check whether the remaining capacity of the sack is still sufficient. 

If so, item ti is chosen and put in the sack. Otherwise, the algorithm moves on to 

the next item (i.e. item ti+1). 

 Problem formulation 

– Input: a set of n items T = {t1, t2, …, tn / each item ti has a weight wi and a profit 

pi} and a sack of capacity C. 

– Solution: a solution consists in selecting a subset of items from set T. The solution 

is encoded as a vector x = (x1, x2, ...., xn) such that xi ∈ {0, 1} to indicate the 

absence / presence of the ith item. 

– Constraint: the sum of the weights of the chosen items must not exceed sack 

capacity C: ∑ wixi ≤ C n
 i = 1  

– Objective function: maximize the total profit: f (x) = ∑ p
i
xi

 n
 i = 1 . 

 Example 

Consider a sack of capacity C = 10 and a set of 4 items whose weights and profits are given 

in the table below. 
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Items (ti) t1 t2 t3 t4 

Profits (wi) 8 10 2.5 3 

Weights (pi) 6 7 2 2 

The greedy algorithm for this example goes through the following steps: 

– By sorting the items in descending order of the values of ratio pi / wi, we obtain: 

Items (ti) t4 t2 t1 t3 

Profits (wi) 3 10 8 2.5 

Weights (pi) 2 7 6 2 

Ratio (pi /wi) 1.5 1.42 1.33 1.25 

– Next, the algorithm iterates over the elements of the sorted set so that it chooses 

items t4 and t2 (the total profit of selected items is 13 while their total weight is 9). 

The remaining items cannot be chosen as they lead to capacity overflow. 

However, this greedy strategy does not guarantee the optimality. Indeed, the optimal 

solution includes items t1, t3 and t4 in the sorted set (the total profit of selected items is 

13.25 while their total weight is 10). 

4. Implication of Matroid theory in greedy methods 

Matroid theory covers many interesting applications of greedy methods. 

4.1. Matroids 

Definition. Let M = (E, I) be a couple where E is a nonempty finite set of n elements and 

I is a nonempty family of subsets of E. M is said to be matroid if it satisfies the following 

two conditions: 

1) heredity property: if H ∈ I and if F ⊂ H then F ∈ I (we say that I is hereditary). In 

other words, if I contains a subset H of set E, I contains all the subsets of H. Note 

that the empty set is necessarily a member of I. 

2) exchange property: if F and H are two elements of I, with |F| < |H|, then there 

exists (at least) one element x ∈ H \ F such that F ∪ {x} ∈ I. 

 Examples 

1) Vector matroids: let E = {v1, …, vn} be a set of vectors in a vector space and I be 

the family of all linearly independent vector subsets of E; M = (E, I) is a matroid. 

2) Graph matroids (the forests of a graph): let G = (V, E) be an undirected graph and 

I be the family of forests of G: F ⊂ I if and only if F is acyclic; M = (E, I) is a matroid. 
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 Properties 

1) Given a matroid M = (E, I). For each element x ∉ F, we say that x is an extension of 

F ∈ I if F ∪ {x} ∈ I. 

2) Let F be an independent subset of a matroid M. So, we say that F is maximal if it has 

no extension (i.e. it is maximal in the sense of inclusion). 

Theorem. All maximal independent subsets of a matroid have the same cardinality. 

Proof. Let assume that F is a maximal independent subset of M and there is another 

larger independent subset H. The exchange property implies that F can be extended 

to an independent set F ∪ {x} for some x ∈ H \ F, which contradicts the assumption 

that F is maximal. 

4.2. Greedy algorithms based on a weighted matroid 

Let M = (E, I) be a matroid; M is said to be weighted if there is a weighting function w of 

E in R+ which assigns a strictly positive weight w(x) to each element x ∈ E.  

For F ⊂ E: w (F) =∑ w (x)
 

𝑥 ∈ 𝐸
. 

 Question: Find an independent of maximal weight (optimal). 

The following algorithm allows finding an independent set A from E of maximal weight. 

Greedy algorithm 

1. Sort the elements of E by decreasing weight: w(e1) ≥ w(e2) ≥ ….. ≥ w(en) ; 

2. A ← 𝜙 ; 

3. For i ← 1 to |E| do 

4.       If (A ∪ ei ∈ I ) then 

5.              A ← A ∪ {ei} ; 

             End if 

        End for 

6. Return A; 

 Optimality proof 

The greedy algorithm given above verifies both the greedy choice property and the optimal 

substructure property. We will not provide the formal proof; more details can be found in 

several other references. Based on these two results, the following theorem shows that the 

said algorithm gives an optimal solution. 

Theorem. The greedy algorithm presented above gives an optimal solution. 

Proof. Let ek be the first independent element of E, i.e. the first index k of the algorithm 

such that ek ∈ I. 
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 There is an optimal solution that contains ek (greedy choice). 

 Then, by recurrence, we show that the algorithm gives an optimal solution (optimal 

substructure): we restrict ourselves to a solution containing ek, and we start again 

with E' = E – {ek} and I' = {X ∈ E'; X ∪ {ek} ∈ I}. 

 By looking at E' = {ek+1, …., en}, the elements ej where j < k cannot be an 

extension of an independent. 

 Analysis of time complexity 

Let n = |E|; the sorting phase of the greedy algorithm takes time of O(n log n). Each 

execution of line 4 imposes to check whether set F ∪ {x} is independent or not. If this 

verification takes time f (n) and the comparisons are done in constant times, the greedy 

algorithm takes time of O (n log n) + n×f (n). 

4.3. Typical examples 

4.3.1. Scheduling on a machine 

The single-processor task scheduling problem consists of a set of tasks X = {t1, t2, …, tn} 

of duration 1, with deadlines d1, d2, …, dn: task ti must end before deadline di, otherwise a 

penalty wi must be paid. The objective is to find a scheduling of the tasks that minimizes 

the sum of the penalties. 

 Principle of the resolution algorithm: it can be seen that the characteristics useful 

to the algorithm are those of the matroid, as illustrated in the following pseudo-code. 

Scheduling-Algorithm 

1. Sort the elements of X by decreasing weight: w (t1) ≥ w (t2) ≥ ….. ≥ w (tn) ; 

2. A ← 𝜙 ; 

3. For i ← 1 to |X| do 

4.       If (A ∪ ti ∈ I ) then 

5.              A ← A ∪ {ti} ; 

             End if 

        End for 

6. Return A = {t1, t2, …, tk}; 

Set A produced by the Scheduling-Algorithm is the optimal solution with a complexity of 

O (n log n). 

 Example 

To show the result of running this algorithm, we consider a typical set of 07 tasks whose 

deadlines and associated penalties are given as follows: 
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Tasks (ti) t1 t2 t3 t4 t5 t6 t7 

Deadlines (di) 4 2 4 3 1 4 6 

Penalties (wi) 7 6 5 4 3 2 1 

The greedy algorithm for this configuration of tasks goes through the following steps: 

1. A = {t1} 

2. A = {t2, t1} 

3. A = {t2, t1, t3} 

4. A = {t2, t4, t1, t3} 

5. A = {t2, t4, t1, t3, t7} 

The resulting schedule is then A = {t2, t4, t1, t3, t7} with a penalty of 5. 

4.3.2. Vehicle rental problem 

Consider a vehicle rental company that has a vehicle for which customers submit requests 

identified by their beginning and end dates. Let E be the set of such statements; for any 

e ϵ E, we denote by beg (e) and end (e) its beginning and end dates, respectively. The 

commercial policy of the company is to satisfy as many customers as possible. The problem 

is therefore to find a subset of E composed of compatible requests whose cardinality is 

maximal. Formally, the compatibility between two requests e1 and e2 implies that 

]beg (e1), end (e1)[ ∩ ]beg (e2), end (e2)[ = ∅ 

 Principle of the resolution algorithm: to find the elements of set E, it is possible to 

rely on a greedy algorithm whose principle is given in the pseudo-code below. 

Vehicle-Rental-Algorithm (E) 

Sort the elements of 𝐸 in ascending order of end date i.e. end (e1) ≤ ⋯ ≤ end (en) 

s1 ← e1 ; // we choose the request that ends the earliest 

k ← 1 ; // k denotes the number of currently satisfied customers 

S ← {s1}; 

For i ← 2 to n do 

If (beg (ei) ≥ end (sk)) then 

k ← k + 1 ; 

sk ← ei ;  

S ← S ∪ {ei} ; 

End if 

End for 

Return S = {s1, s2, …, sk} ; 
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This algorithm is based on a greedy strategy because it builds set S = {s1, s2, …, sk} in a 

sequential way, such that at each step it makes the choice of the least cost (i.e. the 

compatible query of earliest end-date). In addition, the characteristics of matroids are 

projected directly onto this algorithm. Therefore, the Vehicle-Rental-Algorithm generates 

Set S as the optimal solution with a complexity of O (n log n). 

 Example 

Let consider the set of requests given in the table below. 

Elements of E (ei) e1 e2 e3 e4 

Beginnings beg (ei) 3 0 2 0 

Ends end (ei) 6 3 6 1 

Sorting the requests gives end (e4) ≤ end (e2) ≤ end (e1) = end (e3). Thus, the Vehicle-

Rental-Algorithm goes through the following steps (see Figure 1.6):  

– S = {e4} ; 

– e2 is incompatible with e4, nothing occurs; 

– e1 is compatible with e4 ; therefore, S = {e1, e4} ; 

– e3 is incompatible with e3, nothing occurs. 

– The returned solution is S = {e1, e4}. 

 

Figure 1.6. Typical execution of the greedy algorithm. 

5. Advantages and drawbacks of greedy methods 

Greedy algorithms have some advantages over other algorithmic methods, including: 

 Simplicity: greedy algorithms are often easier to describe and code than other 

algorithms. 

 Complexity: the search for a solution by a greedy algorithm can be considered as 

an exploration of a tree of choices where one and only one branch is built without 

going back. This reduces the cost of solving process in terms of time complexity. 
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 Efficiency: in many cases, greedy algorithms are implemented more efficiently 

than other algorithms. Furthermore, they are highly recommended for quickly 

retaining feasible solutions – even if they are not optimal. 

Greedy algorithms also have some drawbacks; we cite as examples: 

 Difficult to design: although greedy algorithms are easy to describe, the big 

challenge is how to do it hoping that we successfully design a good strategy. 

 Difficult to verify: demonstrating that a given greedy algorithm is efficient or even 

optimal often requires a nuanced argument. 

 No guarantee of optimality: even if greedy algorithms are often fast, on the other 

hand the solution they determine can be arbitrarily far from the optimal solution. 
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Chapter II: Divide-and-conquer method 

 

Objective: 

This chapter aims to present the divide-and-conquer paradigm and to show some 

of its application aspects to solve certain typical examples. It also provides a 

theoretical comparison with greedy methods. Finally, this chapter discusses some 

methods for evaluating the algorithms of this paradigm in terms of time complexity, 

in particular through the Master-theorem. 

 

1. Overview on the divide-and-conquer method 

1.1. Principle of the divide-and-conquer method 

Originally, divide-and-conquer was a widespread military strategy before becoming an 

algorithmic design technique. Indeed, it was observed that defeating two armies of 50,000 

soldiers successively was easier than facing a single army of 100,000 soldiers. Proceeding 

analogously, it was inspired by this strategy to design algorithms which solve complex 

problems by using sub-algorithms of lesser complexity. The principle consists in dividing 

a large problem into several analogous sub-problems. The initial problem is solved by 

recombining the partial results obtained by solving its parts. This process is applied 

recursively until it reaches basic sub-problems which are directly solved. By their very 

nature, recursive algorithms use this paradigm because they call themselves one or more 

times on a partition of the original problem, solve the sub-problems recursively and then 

combine the solutions to find a solution to the initial problem. 

1.2. Strategy of the divide-and-conquer method 

The divide-and-conquer paradigm follows a top-down approach, in order to provide 

solutions to problems. The solving-process consists of three stages: 

1) Divide the problem by decomposing it into similar sub-problems of smaller sizes 

whose resolution is identical to that of the initial problem. 

2) Conquer over the sub-problems through recursive solving (recursive calls). If the 

size of a sub-problem is quite small, its resolution is done directly (i.e. we have 

reached a basic case). 

3) Combine the solutions of the sub-problems to construct a complete solution to 

the initial problem. 
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In order to ensure a balanced processing, it is strongly recommended that the 

decomposition of the problem (i.e. the "divide" stage) leads – as much as possible – to 

sub-problems of roughly equal size. Let's consider the example of an integer N; if N is 

even, we take two sub-problems of size N/2, otherwise we take two sub-problems of sizes 

(N - 1) / 2 and (N + 1) / 2, respectively. The solution to the sub-problems is obtained by 

applying the same process until the problem-solving becomes trivial. Generally, divide-

and-conquer algorithms are applied according to two main strategies: 

 The first strategy is the recursion on data for which the data is directly 

decomposed into a certain number of partitions. This gives rise to sub-problems 

which are solved recursively using the same function. At the end, the results 

obtained are combined in order to calculate the complete solution. 

 The second strategy is the recursion on results which first carries out a 

preprocessing before cutting the data into partitions. Then, it recursively solves the 

resulting sub-problems using the same function. Finally, it combines the results 

obtained in order to calculate the complete solution. 

 

Figure 2.1. Strategy of the "divide-and-conquer" method. 

1.3. General scheme 

In general, a viable divide-and-conquer algorithm should: 

– Efficiently divide the problem into sub-problems of balanced sizes (i.e. of 

approximately the same size as possible). 

– Recombine the solutions of the sub-instances through an effective exploitation of 

the obtained partial results. 

– Determine a fitting threshold at which the problem is easily solved on small 

instances rather than relying on recursive calls. 
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The general scheme of the divide-and-conquer algorithm is given as follows: 

Function Divide-and-conquer (P : Problem) : Solution  

S : Solution ; 

Begin 

If (∥ P ∥ is small) then 

      S ← Basic-case (P) ; 

Else 

      (P1, P2, ..., Pk ) ← Divide (P) ; 

      For i ← 1 à k do 

            Si ← Conquer (Pi) ;  

      End for 

      S ← Combine (S1, S1, ..., Sk) ; 

End if 

Return S ; 

End 

 

2. Analysis of divide-and-conquer algorithms 

2.1. General form of recursive formulas for time complexity 

The time complexity of recursive algorithms is defined by means of recursive formulas as 

according to problem size n. In particular, for a divide-and-conquer algorithm this 

recursion is defined based on the three stages namely divide, conquer and combine: 

1. If the size of the problem is small enough (basic case), n ≤ c for some constant c, 

the solution is straightforward and therefore consumes a constant time of O (1). 

2. Otherwise, the problem is divided into a sub-problems each of which is of size 1/b 

of the initial problem size n. Thus, the total time breaks down into three parts as follows: 

A. D (n): time required to divide the problem into sub-problems. 

B. a × T (n/b): time required to solve a sub-problems. 

C. C (n): time required to calculate the global solution using the partial solutions. 

Thus, the recurrence relation takes the form: 

T (n) = 

 

O (1)               if n ≤ c 

a × T (n / b) + C (n) + D (n) = a × T (n / b) + O (nd) 

where n/b is interpreted either as ⌊n / b⌋ or as ⌈n / b⌉. 
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2.2. The Master-theorem 

The master theorem allows solving equations written as recursive formulas related to the 

divide-and-conquer paradigm. Thus, we consider equation T( n) = a × T (n/b) + O (nd), 

where n/b is interpreted either as ⌊n / b⌋ or as ⌈n / b⌉. 

Let λ = logb a. There are three possible scenarios: 

1) if λ > d, then T (n) = O (nλ) ; 

2) if λ = d, then T (n) = O (nd log n) ; 

3) if λ < d, then T (n) = O (nd). 

In practice, only cases 1 and 2 lead to interesting algorithmic solutions. In case 3, all the 

cost is concentrated in the recombination phase, which often means that there exist other 

more efficient solutions. 

3. Divide-and-conquer algorithms vs greedy algorithms 

Both greedy and divide-and-conquer algorithms are two of the most widely used paradigms 

for solving complex problems. Some differences between these methods are given in the 

table below: 

Feature Greedy algorithms Divide-and-conquer algorithms 

Feasibility They make a choice that seems 

the best at the time hoping that 

it leads to the global optimum. 

They make a decision at each step 

taking into account the current sub-

problems to calculate the solutions. 

Goal They are used to find solutions 

to optimization problems, 

hoping that the optimal 

solutions are retained. 

They are used to get solutions to 

various problems without necessarily 

working in the context of 

optimization. 

Recursion They are based on heuristics to 

make the locally optimal choice 

at each stage. 

They are mainly based on recursive 

formulas so that they use the same 

process to solve the sub-problems. 

complexity They generally run faster. They generally run slower. 

Fashion They compute the solutions by 

making choices in a serial 

forward fashion, never looking 

back or revising previous 

choices. 

They compute the solutions in top-

down by dividing the problems into 

smaller sub-problems that are solved 

independently. The solutions are 

obtained by combining the partial 

solutions of the solved sub-problems 
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4. Classic examples 

Now, we present typical cases of applying the divide-and-conquer method to solve some 

computation tasks. 

4.1. Binary search vs sequential search in an array 

Sequential (linear) search iterates over an array or a list to decide whether a given item 

exists or not. The algorithm compares each element of the sequence with the sought item 

until either it finds it or reaches the end of the sequence. The pseudo-code below gives the 

steps for the sequential search for an item e in an array of integers T. 

Input: sought item e and an array T = [e1, e2, ..., en]. 

Output: index i of the first element such that T [i] = e or 0 if e does not belong to T. 

Begin 

For i ← 1 to n do 

If (T [i] = e) then 

Return i ; 

End if 

End for 

Return 0 ; 

End 

Binary search is an alternative solution to sequential search when dealing with an already 

sorted array. The goal is to reduce time complexity. The basic idea behind binary search is 

that at each step the array is divided into two equal parts. Then, the searched item is 

compared with the item in the middle. If the searched item is found, then the algorithm 

returns the corresponding cell index. Otherwise, if the searched item is lower than the 

median element, we make a search in the left half of the array. Finally, if the searched item 

is greater than the median element, we make a search in the right half of the array. In what 

follows, we give the steps of binary search for an item e in a sorted array T [p..r]. 

– Divide: we partition array T [p .. r] around the median. Thus, we obtain two sub-

arrays T1 [p .. q-1] et T2 [q+1 .. r] ; q is the position of the median element. 

– Conquer: if item e is equal to the median element (i.e. T [q]) or the size of the 

array is lower than or equal to 1, the solution is directly got (basic case). Otherwise, 

we recursively search in sub-arrays T1 and T2 using binary search algorithm. 

– Combine: the decision about the existence of the item sought e is made based on 

the decisions made by considering the two sub-arrays T1 and T2. 



Chapter 02                                                        Divide-and-conquer method 

 

21 

The following pseudo-code shows the steps of binary search for an item in a sorted array. 

Function binary-search (T : array [begin .. end], item e) : integer 

Begin 

If (begin > end) then 

Return 0 ; 

Else 

middle ← (begin + end) / 2 ; // in order to partition array T into two parts 

If (T [middle] = e) then 

Return middle ; 

Else 

If (T [middle] > e) then // binary-search in the first part 

Return binary-search (T [begin .. middle - 1], e) ; 

Else // binary-search in the second part 

Return binary-search (T [middle +1 .. end], e) ; 

End if 

End if 

End if 

End 

 Example 

We want to search for item e = 38 in the sorted array T = [3, 9, 10, 27, 38, 43, 82] using 

binary search. Thus, the algorithm presented above goes through the following steps: 

Step 1: it compares the median element of the array (10) with value e = 38. As 10 is lower 

than 38, it searches in the right half of array T. 

Step 2: likewise, it divides the right half of array T into two equal sub-parts. Then, the 

element at the median (38) is compared with the element sought (38). As the two elements 

are equal, the goal is achieved by returning position 4 in array T. 

Result: the sought element (38) was found at position 4 of array T. It is shown that the 

time complexity of the binary search algorithm is O (log2 n). 

4.2. Quick sort 

Quick-sort is an algorithm for sorting arrays or lists while being designed around the 

divide-and-conquer paradigm. The initial data is an unsorted sequence of integers. The 

result is a sorted sequence of these integers. The basic idea behind the quick-sort algorithm 

is to choose a pivot element in the array, partition the array around that pivot, and redo 
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the process recursively on the resulting sub-arrays. The pivot can be chosen in different 

ways, by taking either the first element of the array or any element chosen at random. The 

steps of applying the quick-sort algorithm to a given array T [p .. r] are as follows: 

– Divide: we partition array T [p .. r] around the pivot. Then, we put all the elements 

with small values to the left of the pivot (i.e. T [p.. q-1]) and all the elements with 

greater values to the right of the pivot (i.e. T [q + 1.. r]); q is the final position of 

the pivot. Hence, we obtain two unsorted sub-arrays T1 [p .. q-1] and T2 [q+1 .. r]. 

– Conquer: each of sub-arrays T1 [p .. q - 1] and T2 [q + 1 .. r] are recursively sorted 

using the quick-sort algorithm. 

– Combine: the two sorted sub-arrays are gathered to obtain a sorted array. 

The pseudo-code below describes the steps of the quick-sort algorithm. 

Procedure quick-sort (T : array [left .. right]) 

Begin 

If (left < right) then 

Initialize variables  pivot, i and j to T [left], left and right, respectively; 

While (i < j) do 

i ← i + 1 ; 

While (T [i] ≤ pivot AND i < j) do 

i ← i + 1 ; 

End while 

While (T [j] > pivot) do 

j ← j - 1 ; 

End while 

If (i < j) then 

Swap (T, i, j) ; 

End if 

End while 

Swap (T, left, j - 1) ; 

quick-sort (T, left, j - 1) ; //quick-sort of the first part 

quick-sort (T,  j + 1, right) ; //quick-sort of the first part 

End if 

End 
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 Example 

We want to sort an array of integers T = [38, 27, 43, 3, 9, 82, 10] using quick-sort. Thus, 

the algorithm presented above goes through the following steps: 

Step 1: it chooses a pivot, for example the first element of array T i.e. pivot = 38. 

Step 2: it partitions array T around the pivot so that we put the elements smaller than 38 

to the left of the pivot (i.e. T1 = [27, 3, 9, 10]) and the elements greater than 38 to the right 

of the pivot (i.e. T2 = [43, 82]). 

Step 3: it recursively sorts each of sub-arrays T1 and T2 in order to obtain a sorted array. 

At the end, we get a sorted array: [3, 9, 10, 27, 38, 43, 82]. The time complexity of quick-

sort algorithm according to the worst case is shown to be O (n2 ). 

4.3. Merge-sort 

Merge-sort is another sorting algorithm based on the divide-and-conquer method. It is 

used to sort arrays or lists recursively. The initial data and the result are therefore the same 

as for the quick-sort algorithm. 

The basic idea behind the merge-sort algorithm is to first divide the initial data sequence 

into two equal parts, then sort each of the parts separately, and finally merge the two sorted 

parts to obtain a sorted sequence. The efficiency of the algorithm lies in the fact that the 

two sorted parts are merged in linear time. The steps of applying the merge-sort algorithm 

to sort the elements of an array array T [1 .. n] are given as follows: 

1. Divide: the sequence to be sorted is divided into two sub-sequences of  
n

2
  

elements: T1 [1, … ,
𝑛

2
]  and T2 [

𝑛

2
+ 1, … , 𝑛]. 

2. Conquer: if the array to be sorted contains at most one element, it is already 

sorted. In this case, the algorithm simply returns the considered array without 

modification (basic case). Otherwise, it recursively sorts each of the two parts T1 

and T2 using the merge-sort algorithm. 

3. Combine: the two sorted parts are merged into a single sorted part. To do so, 

the algorithm compares the elements of the two parts in ascending or descending 

order (depending on the sorting purposes), then it puts them in a new array so 

that the resulting sequence is sorted. 

The following pseudo-code describes the steps of the merge-sort algorithm. 
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Function merge-sort (T : array [begin .. end]) : array [begin .. end] 

Begin 

If (begin ≥ end) then 

Return T ; 

Else 

middle ← (begin + end) / 2 ; // in order to partition array T into two parts 

T1 ← merge-sort (T [begin .. middle]) ; // merge-sort of the first part 

T2 ← merge-sort (T [middle +1 .. end]) ; // merge-sort of the second part 

Return merge (T1, T2) ; // merge the two sorted parts 

End if 

End 

Function merge (T1 : array [b1 .. e1], T2 : array [b2 .. e2]) : array T [begin .. end] 

Initialize i, j and k to b1, b2 and 1, respectively; 

While (i ≤ e1 AND j ≤ e2) do 

If (T1 [i] > T2 [j]) then 

Copy T1 [i] into T [k] and then increment i ; 

Else 

Copy T2 [j] into T [k] and then increment j ; 

End if 

k ← k + 1 ; 

End while 

For r ← i to e1 do 

Copy T1 [r] into T [k] and then increment k ; 

End for 

For r ← j to e2 do 

Copy T2 [r] into T [k] and then increment k ; 

End for 

Return T ; 

End 

 Example 

We want to sort an array of integers T = [38, 27, 43, 3, 9, 82, 10] using merge-sort. Thus, 

the algorithm presented above goes through the following steps (see Figure 2.2.): 

Step 1: Array T is divided into two parts: T1 = [38, 27, 43, 3] and T2 = [9, 82, 10]. 
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Step 2: We recursively sort each of the parts T1 and T2: 

– Processing on part 1: we divide array T1 into two equal parts: T11 = [38, 27] and 

T12 = [43, 3]. Then, we recursively sort each of the two subparts so that array T11 

becomes [27, 38] and array T12 becomes [3, 43]. Finally, we merge the two sorted 

subparts into a single sorted part: [3, 27, 38, 43]. 

– Processing on part 2: in a similar way, array T2 is divided into two parts: T21 = [9] 

and T22 = [82, 10]. Then, we recursively sort each of the two subparts so that array 

T21 remains unchanged (subpart already sorted) and array T22 becomes [10, 82]. 

Finally, we merge the two sorted subparts into a single sorted part: [9, 10, 82]. 

Step 3: the two parts resulting from the sorting of sub-arrays T1 and T2 are merged into a 

single sorted part: [3, 9, 10, 27, 38, 43, 82]. 

The final result is a sorted array T' = [3, 9, 10, 27, 38, 43, 82]. It is shown that the time 

complexity of the merge-sort algorithm is O (n log n). 

 

Figure 2.2. Sorting array T using merge-sort algorithm. 

4.4. Strassen's algorithm for matrix multiplication 

Strassen's algorithm is a divide-and-conquer matrix multiplication algorithm that is faster 

than the standard matrix multiplication algorithm for large matrices. The basic idea of 

Strassen's algorithm is to divide the matrices to be multiplied into smaller sub-matrices, in 

order to reduce the total number of scalar multiplications needed for the operation. More 

precisely, if A and B are two square matrices of size n × n, Strassen's algorithm performs 

the multiplication operation as follows: 

– Divide: partition each matrix into four sub-matrices of size n/2 × n/2: 

A= [
A11 A12

A21 A22
] ,  B= [

B11 B12

B21 B22
] 
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– Conquer: calculate the scalar multiplications Pi = 1 .. 7 and the scalar values Ci = 1 .. 4: 

P1 = (A11 + A22) × (B11 + B22) 

P2 = (A21 + A22) × B11 

P3 = A11 × (B12 − B22) 

P4 = A22 × (B21 − B11) 

P5 = (A11 + A12) × B22 

P6 = (A11 − A21) × (B11 + B12) 

P7 = (A12 − A22) × (B21 + B22) 

C11 = P1 + P4 – P5 + P7 

C12 = P3 + P5 

C21 = P2 + P4 

C22 = P1 + P3 – P2 – P6 

– Combine: form the resulting matrix C from sub-matrices Ci = 1 ..2, j = 1.. 2: 

C = [
C11 C12

C21 C22
] 

The main advantage of Strassen's algorithm is that it reduces the number of scalar 

multiplications needed to perform matrix multiplication from 8 to 7. Although this strategy 

seems non-significant, it generates a clear improvement in performance when dealing with 

sufficiently large matrices. 

 Example 

In the following, Strassen's algorithm is applied to the calculation of a multiplication 

operation of two matrices A and B of size 2 × 2. 

Let A = [
1 2

3 4
] and B = [

5 6

7 8
] be two square matrices. Strassen's algorithm goes 

through the following steps: 

Step 1: divide each matrix into four sub-matrices of size 1×1: 

A = [
A11 = [1] A12 = [2]

A21 = [3] A22 = [4]
]    and    B = [

B11 = [5] B12 = [6]

B21 = [7] B22 = [8]
] 

Step 2: calculate the scalar operations: 

P1 = (A11 + A22) × (B11 + B22) = (1 + 4) × (5 + 8) = 65 

P2 = (A21 + A22) × B11 = (3 + 4) × 5 = 35 

P3 = A11 × (B12 − B22) = 5 × (6 − 8) = -2 

P4 = A22 × (B21 − B11) = 4 × (7 − 5) = 8 

P5 = (A11 + A12) × B22 = (1 + 2) × 8 = 23 



Chapter 02                                                        Divide-and-conquer method 

 

27 

P6 = (A11 − A21) × (B11 + B12) = (1 − 3) × (5 + 6) = -22 

P7 = (A12 − A22) × (B21 + B22) = (2 − 4) × (7 + 8) = -30 

C11 = P1 + P4 – P5 + P7 = 65 + 8 – 24 -28 = 19 

C12 = P3 + P5 = P3 + P5 = -2 + 24 = 22 

C21 = P2 + P4 = P2 + P4 = 35 + 8 = 43 

C22 = P1 + P3 – P2 – P6 = 65 – 2 – 35 + 22 = 50 

Step 3: combine sub-matrices Ci = 1 ..2, j = 1.. 2 to obtain the final result: 

C = [
19 22

43 50
] 

The result is checked by performing the standard matrix multiplication A × B to obtain: 

C = [
1 × 5 + 2 × 7 1 × 6 + 2 × 8

3 × 5 + 4 × 7 3 × 6 + 4 × 8
] = [

19 22

43 50
] 

The result is identical to that obtained using Strassen's algorithm. 

Note that for sufficiently large matrices, Strassen's algorithm shows higher performances 

than the standard matrix multiplication algorithm. Nevertheless, Strassen's algorithm is not 

always faster, as it has a higher constant running time. 

5. Advantages and drawbacks of the "divide-and-conquer" method 

Divide-and-conquer algorithms have some advantages over other methods, including: 

 Simplicity: divide-and-conquer algorithms are often easier to describe and code 

than other algorithms. This is because they mainly rely on recursive formulas. 

 Possibility of parallelism: divide-and-conquer algorithms are naturally adapted 

to perform parallel computation provided that the different threads run 

independently (e.g. the merge-sort). 

 Efficient use of cache memory: divide-and-conquer algorithms efficiently use 

cache memory without occupying much space. Indeed, the sub-problems are small 

enough so that they can be solved in cache without using the main memory which 

is slower. Algorithms using cache efficiently are called cache oblivious. 

Divide-and-conquer algorithms also have some drawbacks; let us cite as examples: 

 Difficulties induced by recursion: divide-and-conquer algorithms naturally lend 

themselves to recursive writing. This may lead to two major issues: high runtime 

stack usage and resource overflow caused by the number of recursive calls. 

 Computational redundancy: the recursive algorithms resulting from applying the 

divide-and-conquer method sometimes lead to computational redundancy with 

respect to the obtained sub-problems; the Fibonacci function is a good example. 
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Chapter III: Dynamic programming 

 

Objective: 

This chapter aims to present the dynamic programming paradigm and then to 

show some of its application aspects to solve several typical examples. It also 

provides a comparison with both greedy and divide-and-conquer methods. Finally, 

this chapter presents some methods for designing such algorithms. 

 

1. Overview on dynamic programming 

1.1. Dynamic programming principle 

Dynamic programming is an algorithmic method that solves optimization problems by 

breaking them down into simpler sub-problems and then deals with these sub-problems 

recursively. This approach can efficiently solve complex problems by avoiding 

recalculating redundant sub-problems multiple times. To do so, dynamic programming 

involves matrix programming methods. The idea is to store the intermediate results in an 

array so that they are reused to solve later sub-problems. Generally speaking, dynamic 

programming is very suitable for solving combinatorial optimization problems, where the 

goal is to optimize a constrained objective function. In such cases, the solving-process 

maintains a set of potential solutions for which it has to find the optimal solutions (i.e. 

those maximizing or minimizing the value of the cost function). 

1.2. When and how to use dynamic programming 

Although dynamic programming is a general method of problem-solving, there is no rule 

to say that it can or cannot be used to solve this or that problem. In general, the possibility 

of using this method is a question that depends on the ability of satisfying two main 

properties: the property of optimal substructure (Bellman's principle of optimality) and 

the property of superposition (overlapping) of the sub-problems. 

1) Optimal substructure property (Bellman's principle): any optimal solution 

relies itself on the combination of locally solved sub-copies in an optimal way. 

2) Property of the superposition (overlapping) of sub-problems: once the 

recursive expression has been obtained, we proceed to an analysis of what happens 

in a naive recursive implementation. If we realize that the same problem is solved 

several times, we are then in the context of dynamic programming. 
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1.3. Dynamic programming strategy 

Dynamic programming follows both top-down and bottom-up approaches to solve 

problems. The construction of solutions gives rise to four stages: 

1) The application of Bellman's principle allows obtaining the recursive formula that 

defines the solution to the considered problem according to its sub-problems. 

2) In dynamic programming, each sub-problem is solved only once where the result 

is stored in a cell of an array. The decomposition of the problem helps determine 

the structure of this array (which can be of dimension 1, 2, 3, etc.) according to the 

number of parameters involved in the recursive formula. Once the table of results 

has been created, its elements are initialized. This step depends on the initial 

conditions of the formula obtained in step 1. 

3) Then, the solving-process fills in the table of results. This step consists in solving 

the different sub-problems using the formula obtained in step 1, following bottom-

up or top-down orders. There are two approaches to populate the table of results: 

i) iterative approach: the solving-process first initializes the cells corresponding 

to the basic cases. Then, the table is filled in according to a very precise order: 

the sub-problems are solved from smallest to largest until reaching the main 

problem. For each decision step, only the solutions already calculated are used 

so that each element is calculated once and only once. 

ii) recursive approach: on each call to the solving-process, it looks at the table 

to see if the value has already been calculated. If so, it is not recalculated but 

rather the stored value is retrieved and used. Otherwise, it is calculated, 

memorized in the corresponding cell and finally used. 

4) Step 3 allows only retrieving the optimal value of the cost function without 

specifying the intermediate values contributing to obtaining the result. In general, 

the detail of the solutions requires traversing the table of results starting from the 

final solution and reconstructing the reverse path of the calculations made to 

achieve there. 

1.4. General scheme 

In general, to design an efficient algorithm based on dynamic programming principles, 

some aspects should be taken into consideration: How to define the array of results as well 

as the boundary values? In what order should one fill it in? Where to get the answer? 

There are two main ways to store the values in order to reuse sub-problems results: 

Tabulation which is bottom-up and Memoization which is top-down. The statements 
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given in the following example help make a distinction between the two methods. Ali says: 

"I will first learn foundations of dynamic programming, and then I will practice several 

exercises in order to master this programming paradigm". In turn, Sarah says: "to master 

the dynamic programming paradigm, I would practice several exercises but first I would 

have to study its foundations". Both Ali and Sarah say the same thing, the difference simply 

lies in the way the message is conveyed and that’s exactly what tabulation and memoization 

do, respectively. 

The general scheme of tabulation follows an iterative process, as given in the pseudo-code 

below. 

Function dynamic-programming (x : problem) : solution 

Begin 

Define an array T of dimension d ; 

Initialize the values of cells in array T ; 

For i1 ← beg1 to end1 do 

 

For id ← begd to endd do 

T [i1, …., id] ← expression using the cells already calculated ; 

End for 

 

End for 

Return expression using cells from array T ; 
End 

Although it solves the problem of redundant computations found in the divide-and-

conquer method, dynamic programming may in turn lead to unnecessary calculations. This 

is due to performing bottom-up treatments which may generate values that will not be 

used later. 

To overcome these difficulties, it is possible to rely on the technique of memoization 

through an effective combination between the simplicity and elegance of the divide-and-

conquer paradigm (i.e. recursion) and the efficiency of dynamic programming (i.e. table of 

results). The idea is to use an array of sufficient size that stores the solutions of the sub-

problems within a recursive function that defines the solving-process of the original 

problem, as shown in the following pseudo-code. 
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Global variables 

T : array of d dimensions ; 

function f (x1, x2, …, xd) : solution 

Begin 

If (T [i1, …., id] ≠ initialization value) then 

s ← T [i1, …., id] ; 

Else 

s ← f (x'1, x'2, …, x'd) ; 

T [i1, …., id] ← s ; 

End if 

Return s ; 
End 

The elements of array T are initialized with a special value to indicate that they are not yet 

defined. Then, with each call to function f, we check the existence of the calculated value 

in array T. If the values is already calculated, we directly return the content stored in array 

T. Otherwise, we proceed to calculate function f, store the result in array T and finally 

return the value calculated on these parameters. The memoization avoids the recalculation 

of previously used values. Even so, this may lead to excessive use of additional memory 

space; therefore, even if we gain in temporal complexity, we lose in spatial complexity. The 

table below gives a comparison between the tabulation and memorization techniques. 

   Tabulation     Memoization    

Transition state Difficult to think. Easy to think. 

Code Complicated when several 

conditions are required. 

Easy and less complicated. 

Speed Fast, as previous states are 

directly accessed from the table 

Slow due to the number of 

recursive calls. 

Sub-problem 

solving 

Useful when all sub-problems 

must be solved at least once. 

Useful in cases where some sub-

problems do not need to be 

solved at all. 

Table entries All entries are filled one by one, 

starting from the first entry 

(basic cases). 

All entries of the lookup table are 

not necessarily filled; the table is 

filled on demand. 

Approach Iterative approach. Recursive approach. 
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2. Dynamic programming vs divide-and-conquer paradigm 

The divide-and-conquer paradigm relies on breaking down a problem into identical sub-

problems, solving them recursively, and then combining the partial solutions to form the 

solution to the initial problem. If such a decomposition always leads to independent sub-

problems, this strategy is probably effective. Otherwise, if the resulting sub-problems have 

dependencies between them, they will have other common sub-problems. This leads the 

algorithm to perform extra processing since it solves certain sub-problems several times. 

This disadvantage is illustrated by Figure 3.1 which schematizes the execution of the 

calculation of the Fibbonacci sequence by the divide-and-conquer method. 

 

Figure 3.1. Execution scheme of Fibbonacci sequence by the divide-and-conquer method. 

Dynamic programming is a design paradigm that overcomes some of the difficulties 

induced by the divide-and-conquer paradigm by making improvements and adaptations so 

that redundant computations will be computed only once. Just like in the divide-and-

conquer method, this paradigm also solves a given problem based on the previous 

solutions obtained from the sub-problems. However, in dynamic programming, sub-

problems may overlap so as to be used in solving several different sub-problems. On the 

other hand, in the divide-and-conquer paradigm, the sub-problems are completely 

independent of each other and are solved separately even if they present redundant 

computations. In other words, dynamic programming allows sub-problems to interact with 

each other, which is not the case for the divide-and-conquer method. Figure 3.2 illustrates 

this difference between these two methods where the root represents the problem to be 

solved while the descendants represent the sub-problems whose resolution is easier. In 

particular, the leaves represent the sub-problems corresponding to the basic cases (i.e. 

trivial resolution without decomposition). 

The second major difference between these two methods lies in the way of carrying out 

the computations to solve a given problem through the recombination of the solutions of 

the sub-problems. In the divide-and-conquer method, treatments are always performed 
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from top to down, starting with solving the largest sub-problems. In contrast, treatments 

in dynamic programming can be carried out as well in bottom-up as in top-down 

depending on whether one starts with solving the smallest sub-problems before the main 

problem or not. 

 

Figure 3.2. Difference between dynamic programming and divide-and-conquer methods. 

3. Dynamic programming vs greedy algorithms 

Greedy algorithms and dynamic programming are two of the most widely used paradigms 

for solving optimization problems. Detailed differences are given in the table below: 

Feature Greedy algorithms Dynamic programming 

Feasibility They make a choice that 

seems the best at the time 

hoping that it leads to the 

global optimal solutions. 

It makes a decision at each step taking 

into account the current problem and 

the solutions of solved sub-problems 

to calculate the optimal solution. 

Optimality Sometimes there is no 

guarantee to get the optimal 

solutions. 

It is guaranteed to get the optimal 

solution as it considers all possible 

cases and then chooses the best one. 

Recursion They are based on heuristics 

to make the locally optimal 

choice at each stage. 

It is based on recursive formulas that 

use some previously calculated states. 

Space / time 

complexity 

They are more efficient in 

terms of memory as they 

never look back. Moreover, 

they generally run faster. 

It stores the intermediate results of 

solved sub-problems in a table; this 

may increase the space complexity. 

Moreover, they generally run slower. 

Fashion They compute the solutions 

by making choices in a serial 

forward fashion while never 

looking back or revising 

previous choices. 

It computes the solutions in bottom-

up or top-down by synthesizing them 

from smaller optimal sub-solutions. 
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4. Classic examples 

Now, we present some typical cases of dynamic programming applications to solve certain 

computational tasks. 

4.1. Calculation of shortest path in a graph (Floyd-Warshall algorithm) 

Let G = (V, E) be a directed graph where each edge has a non-negative length; V = {1, 2, 

…, n} is a set of n vertices (nodes) and E is the set of edges between the vertices. The 

distances between the vertices are represented as adjacency matrix M [1..n, 1..n]. To 

calculate the length of the shortest paths between all pairs of vertices from set V, Floyd's 

algorithm is used. To do so, it builds a matrix D which gives the length of the shortest path 

between each pair of vertices. This is an optimization problem that verifies the optimality 

principle: if the shortest path (optimal path) between two vertices A and B goes through 

an intermediate vertex C, then the portions of paths between A and C, and between C and 

B, must necessarily be optimal. 

1. Recursive formula: Floyd's algorithm calculates the shortest path between each 

pair of vertices by using as intermediate vertices the elements of set V in order and 

successively. At each iteration k, matrix D gives the length of the shortest paths by 

involving only vertices {1, ..., k} as intermediate nodes. The recursive formula for 

calculating matrix D values is given as follows: ∀ i, j ∈ V, D [i, j, k] = min (D [i, j, 

k - 1], D [i, k, k-1] + D [k, j, k-1]); the aim is to finally calculate D [i, j, n]. 

2. Definition and initialization of the array of results: the decomposition of the 

problem shows that the recursive formula is defined according to a single 

parameter: iteration number k. Intuitively, the array of results, denoted by D[1..n, 

1..n, 1..n, 0..n], is three-dimensional (d = 3), where each element D [i, j, k] will 

store the shortest distance between vertices i and j involving only nodes {1, .., k}. 

3. Filling in the array of results: the filling of the array of results is done according 

to the iterative approach, as shown in the pseudo-codes below. 

4. Reading the solution: by reading any given cell D [i, j, n], we obtain an immediate 

answer about the shortest path between vertices i and j. However, if we want to 

list the intermediate vertices composing the shortest path between vertices i and j, 

we need to add an array N [1..n, 1..n, 1..n, 0..n] such that each cell N [i, j, k] keeps 

the index of the selected vertex at iteration k. 
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Floyd's algorithm 

Global variables 

M [1..n, 1..n, 1..n, 0..n] : array of real ; //vertices and edges of graph G = (V, E) 

D [1..n, 1..n, 1..n, 0..n] : array of real ; 

Procedure Floyd-Warshall () 

Begin 

For i ← 1 to n do 

For j ← 1 to n do 

D [i, j, 0] ← M [i, j] ; //Assume that M [i, i] = 0 and M [i, j] = +∞ if (i, j) ∉ E 

End for 

End for 

For k ← 1 to n do 

For i ← 1 to n do 

For j ← 1 to n do 

D [i, j, k] ← min (D [i, j, k - 1], D [i, k, k-1] + D [k, j, k-1]) ; 

End for 

End for 

End for 

End 

4.2. Calculation of the binomial coefficient 

A binomial coefficient, denoted by C k
 n

, is defined over each two integers n ≥ 0 and k with 

0 ≤ k ≤ n, as the number of parts with k elements of a set of n elements. Here, we are 

interested in the recursive definition of binomial coefficients, given by the following 

formula: 

C k
 n

 = 

 

1               if n = k or k = 0 

C k
 n - 1

 + C k - 1
 n - 1

 

It is then asked to write a function that calculates C k
 n

 using the principle of dynamic 

programming. For this purpose, we rely on the steps defined in section 4. 

1. Recursive formula: the recursive formula is the same as the one given above. 

2. Definition and initialization of the table of results: the decomposition of the 

problem shows that the recursive formula is defined according to two parameters: 
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n and k. Intuitively, the array of results, denoted by T [0..n, 0..k], is two-dimensional 

(d = 2), where each element T [i, j] will store the value C i
  j

 (see Figure 3.3). 

 

Figure 3.3. The array of results for the calculation of the binomial coefficient. 

3. Filling in the array of results: the filling of the array of results is done according 

to both iterative and recursive approaches, as shown in the pseudo-codes below. 

4. Reading the solution: by reading each cells T [n, k], we obtain an immediate 

answer about the value C k
 n

. Now, if we want to get this value as a sum of terms, 

we just need to backtrack over the cells of array T based on the recursive formula. 

Iterative approach Recursive approach 

Global variables 

T [0 .. n, 0 .. k] : array of integers ; 

Function C (n, k : integer) : integer 

Begin 

//initialization 

For i ← 0 à n do 

T [i, 0] ← 1 ; 

T [i, i] ← 1 ; 

End for 

For i ← 2 à n do 

For j ← 1 à min (k, i - 1) do 

T [i, j] ← T [i -1, j -1] + T [i -1, j] ; 

End for 

End for 

Return T [n, k] ; 

End 

Global variables 

T [0 .. n, 0 .. k] : array of integers (initialized to 0 

except for basic cases to 1) ; 

Function C (n, k : integer) : integer 

Begin 

If (T [n, k] ≠ 0) then 

Return T [n, k] ; 

Else 

If (k = 0 OR k = n) then 

v ← 1 ; 

Else 

v ← C (n - 1, k - 1) + C (n - 1, k) ;  

End if 

End if 

T [n, k] ← v ; 

Return v ; 

End 
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4.3. Wooden planks cutting problem 

Let consider a sawmill that sells wooden planks according to their lengths: the selling price 

of a wooden plank of length i is pi. When it receives as input a wooden plank of length n, 

it can either derive the profit / price pn directly, or seek to cut it into k pieces to derive 

several sub-planks of length i1, i2, …., ik (with i1 + i2 + ….+ ik = n) and obtain as profit 

the sum pi1 + pi2 + ….+ pik of the selling prices of the sub-planks. For the sawmill problem, 

it is asked to determine the solution that will guarantee a maximum profit for any given 

wooden plank of length n. 

Exemple 

Length i 1 2 3 4 5 6 7 8 9 10 

Price pi 1 5 8 9 10 17 17 20 24 30 

Possibilities for a wooden plank of length i = 4. 

– No cutting: profit 9 

– Cutting 1 + 3: profit 1 + 8 = 9 

– Cutting 2 + 2: profit 5 + 5 = 10 

– Cutting 3 + 1: profit 8 + 1 = 9 

– Cutting 1+1+2: profit 1 + 1 + 5 = 7 

– Cutting 1+2+1: profit 1 + 5 + 1 = 7 

– Cutting 2+1+1: profit 5 + 1 + 1 = 7 

– Cutting 1+1+1+1: profit 1 + 1 + 1 + 1 = 4. 

Optimal solution: cutting 2+2, i.e. 2 pieces of length 2 with a total profit of 10. 

1. Recursive formula: let rn be the maximum profit achievable for a wooden plank 

of length n, with r0 = 0. A possible recursive formula is:  rn = max
1 ≤ i ≤ n

(p
i
+ rn-i). It 

is obtained by considering that what we get in the end is a piece at the left end of 

length i and therefore at price pi, and a rest of length n - i, which must be an 

optimal cut of a wooden plank of length n - i. 

2. Definition and initialization of the array of results: the decomposition of the 

problem shows that the recursive formula is defined according to a single 

parameter: the length of a plank n. Intuitively, the array of results, denoted by 

R[0..n], is one-dimensional (d = 1), where each element R [i] will store the 

maximum profit achievable for a plank of length i. 
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3. Filling in the array of results: the filling of the array of results is done according 

to both iterative and recursive approaches, as shown in the pseudo-codes below. 

4. Reading the solution: by reading any given cell R [i], we obtain an immediate 

answer about the maximum profit achievable for a plank of length i. However, if 

we want to know the different cuts of each plank of length i leading to recording 

an optimal profit, it is necessary to add an array S [0 .. n] which keeps the index of 

the left plank; the right part is easily deduced in the same way. 

Iterative approach Recursive approach 

Global variables 

S [0 .. n] : array of integers ; // lengths 

P [0 .. n] : array of integers ; // profits 

R [0 .. n] : array of integers ; // max profits 

Function Cut (n : integer) : integer 

Begin 

//initialization 

R [0] ← 0 ; 

For j ← 1 à n do 

q ← −∞ ; 

For i ← 1 à j do 

If (q < P [i] + R [j - i]) then 

q ←  P [i] + R [j - i] ; 

S [j] ←  i ; 

End if 

End for 

R [j] ← q ; 

End for 

Return R [n] ; 

End 

Global variables 

S [0 .. n] : array of integers ; // lengths 

(initialized to −∞) 

P [0 .. n] : array of integers ; // profits 

R [0 .. n] : array of integers ; // max profits 

Function Cut (n : integer) : integer 

Begin 

If (R [n] ≥ 0) then 

Return R [n] ; 

Else 

if (n = 0) then 

q ← 0 ; 

Else 

q ← −∞ ; 

For i ← 1 à n do 

If (q < P [i] + Cut (n – i)) then 

q ←  P [i] + Cut (n – i) ; 

S [n] ← i ; 

End if 

End for 

End if 

R [n] ← q ; 

End if 

Return q ; 

End 
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If we want to display the lengths of the different pieces of cutting a plank of length n 

(reading a solution), we just have to run the following pseudo-code: 

While (n > 0) do 

Print ("a piece of length: ", S [n]) ; 

n ← n - S [n] ; 

End while 

4.4. Maximum path sum in a pyramid of numbers 

In a pyramid of numbers, we seek to maximize the sum of the numbers crossed starting 

from the top of the pyramid and descending in stages one-by-one. In the example shown 

in Figure 3.4, the maximum corresponds to the path colored in red (3+7+4+9=23). 

 

Figure 3.4. The maximum path sum in a typical pyramid of numbers. 

Practically speaking, the pyramid of numbers can be modeled as a lower triangular matrix 

P [1..n, 1..n], n is the number of stages as given in Figure 3.5. 

3 0 0 0 

7 4 0 0 

2 4 6 0 

8 5 9 3 

Figure 3.5. The lower triangular matrix related to the pyramid shown in Figure 3.4. 

We denote by S (i, j) the maximum sum corresponding to cell (i, j) in matrix P. Each value 

S (i, j) depends on the value of cell (i, j) (i.e. P [i, j]) and the values of the maximum sum 

of its left and right children (i.e. S (i+1, j) and S (i+1, j+1)). Consequently, the recursive 

definition of the maximum path sum for each cell (i, j) is given by the following formula: 

S (i, j) = 

 

P [i, j]                                                           when i = n 
(1 ≤ i, j ≤ n) 

P [i, j] + max (S (i + 1, j), S (i + 1, j + 1))    when i < n 

Thus, it is asked to write a function that calculates the sum of all maximum paths S (i, j), 

in particular S (1, 1), using the principle of dynamic programming. To achieve this goal, 

we rely on the steps defined in section 4. 

1. Recursive formula: the recursive formula is the same as the one given above. 
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2. Definition and initialization of the table of results: the decomposition of the 

problem shows that the recursive formula is defined according to two parameters: 

i and j. Intuitively, the array of results, denoted by T [1..n, 1..n], is two-dimensional 

(d = 2), where each element T [i, j] will store the value S (i, j). 

3. Filling in the array of results: the filling of the array of results is done according 

to both iterative and recursive approaches, as shown in the pseudo-codes below. 

4. Reading the solution: by reading each cells T [i, j], we get an immediate answer 

about the maximum value in position (i, j) in the pyramid. Now, if we want to get 

this value as a sum of terms, we need to add an array N [1..n, 1..n] such that each 

cell N [i, j] stores the column number of the cell maximizing S (i, j) while taking as 

value either j or j + 1. 

Iterative approach Recursive approach 

Global variables 

P [1 .. n, 1 .. n] : array of integers ; 

N [1 .. n, 1 .. n] : array of integers ; 

T [1 .. n, 1 .. n] : array of integers ; 

Function S () : integer 

Begin 

//initialization 

For i ← 1 à n do 

T [n, i] ← P [n, i] ; 

End for 

For i ← n - 1 à 1 do 

For j ← i à 1 do 

// we can modify this line of code 

to save j or j + 1 in N [i, j] 

v ← max (T[i+1, j], T[i+1, j+1]) ; 

T [i, j] ← P [i, j] + v ; 

End for 

End for 

Return T [1, 1] ; 

End 

Global variables 

P [1..n, 1..n] : array of integers ; 

N [1 .. n, 1 .. n] : array of integers ; 

T [1..n, 1..n] : array of integers (initialized to -1 

except for basic cases i=1..n: T [n, i] ← P [n, i]); 

Function S (i, j : integer) : integer 

Begin 

If (j = n + 1) then 

Return 0 ; 

Else 

If (i = n  OR T [i, j] ≠ -1) then 

Return T [i, j] ; 

Else 

// we can modify this line of code to save 

j or j + 1 in N [i, j] 

v ← max (S (i+1, j), S (i+1, j+1)) ; 

T [i, j] ← P [i, j] + v ; 

End if 

End if 

Return T [i, j] ; 

End 
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If we want to display the path of the minimum sum starting from the top, we just have to 

run the following pseudo-code: 

j ← N [1, 1] ; 

Print ("Element: [1, 1]") ; 

For i ← 1 à n - 1 do 

Print ("Element: [", (i + 1), ", ", j," ]") ; 

j ← N [i, j] ; 

End for 

5. Advantages and drawbacks of dynamic programming 

Algorithms based on dynamic programming have certain advantages over other 

algorithmic methods, including: 

 Optimality: algorithms based on dynamic programming always retain the optimal 

solutions when it is asked to solve optimization problems. 

 Dependency management between calculations: dynamic programming 

better manages the dependency links between calculations. Indeed, we only need 

to store the elements used to solve the next sub-problems, and thus get rid of most 

of the old sub-problems which can hinder the progress of the algorithm. 

 Facilities offered by memoization: the technique of memoization has several 

advantages such as the ease of coding and the use of a cache to obtain responses. 

Algorithms based on dynamic programming also have some drawbacks; cite as examples: 

 Design difficulties: designing dynamic programming algorithms to solve 

complex problems is sometimes very complicated, as it requires a precise 

decomposition of the problem into sub-problems and a deep understanding of the 

relationships between the sub-problems. 

 Storage space: dynamic programming may require a lot of storage space to store 

intermediate results; this is problematic for large problems. It may also lead to 

performance issues because memory management may become a bottleneck for 

such algorithms. 

 Application limitations: dynamic programming is not a general solving-method 

to all optimization problems. Some problems classes may not be suitable for 

dynamic programming as they lack the properties of recurrent sub-problems and 

well-defined transition relations. 
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Chapter IV: Backtracking 

 

Objective: 

This chapter aims to present the principles of the backtracking method as well as 

its use for solving constraint satisfaction problems. It also provides a theoretical 

comparison with dynamic programming. Next, it shows the application aspects of 

backtracking algorithms to solve some typical examples. Finally, this chapter 

presents some methods to improve the design of such algorithms. 

 

1. Constraints satisfaction problems 

– A constraint satisfaction problem (CSP) is defined by a triplet (X, D, C), where: 

 X = {x1, … , x𝑛} is a finite set of variables to solve, 

 D is a function that associates to each variable xi a domain of definition 

D (xi), i.e. set of values that variable xi can take. 

 C = {c1, …, cm} is a finite set of constraints on variables xi = 1 .. n. 

– We call state any assignment of values (i.e. evaluation) for some or all of variables 

xi = 1 . .n. This is a set of pairs (variable, values): A = {(xi, vi) / xi ∈ X and vi ∈ D (xi)}. 

An evaluation is said to be partial if it corresponds to a subset of variables and 

total (also called complete) otherwise. An evaluation is said to be consistent if it 

shows no violation of constraints (i.e. satisfies all the constraints). 

– A solution to a CSP problem is a complete and consistent evaluation. Moreover, 

sometimes the solution must optimize a given objective function. 

 Example: let consider a CSP defined by a triplet (X, D, C) such that: 

 X = {x1, x 2, x 3} is the set of variables, 

 The domain D of the variables of set X: D (x1) = D (x2) = D (x3) = {1, 2, 3}, 

 C is the set of constraints: C = {c1 : x1 = x2 + x3}. 

The solutions of this problem are A1 = (2, 1, 1), A2 = (3, 1, 2) and A3 = (3, 2, 1). 

2. Overview of the backtracking method 

2.1. Principle of the backtracking method 

Backtracking is a general algorithm that can be applied to several problems, in particular 

for CSPs. It is based on a systematic method that iterates over all possible configurations 
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of a search space. In a backtracking-based algorithm, a potential solution is usually encoded 

as a vector (n-tuple) A = (x1, x2, …, xn) such that each variable xi = 1 .. n is an element from 

a finite set X and defined over a set of values D (xi). In the end, the algorithm retains one 

or more vectors satisfying certain criteria, linked to an optimization function in some cases. 

At each step, the backtracking algorithm forms a solution and checks whether there is still 

a chance for success or not. To this end, the algorithm starts with a given partial solution 

sol = (x1, x2, …, xk) (k ≤ n), tries to extend it by adding another element xk + 1 and decides 

whether the result is valid (i.e. potentially extendible partial solution) so that it may lead to 

a complete solution. If so, the algorithm recurs and continues hoping it reaches a complete 

solution. Otherwise, it backtracks by deleting the last element from the current partial 

solution and then tries another possibility for that position if possible. 

Backtracking is a modified depth first search on an implicit tree of configurations, since 

the search for solutions is assisted by using a tree-like organization of the solutions space. 

The nodes are the different states and the arcs represent the transitions from one state to 

another. In the event that a given node cannot lead to consistent nodes (i.e. dead-end), the 

algorithm goes back (backtracks) to the parent nodes and proceeds to search on the next 

child, as shown in Figure 4.1. 

 

Figure 4.1. Tree of configurations (solutions space). 

A backtracking algorithm does not actually need to build a tree but rather it only needs to 

keep track of the values in the current branch being investigated. That is why it is said that 

the state space tree exists implicitly in the algorithm as it is not entirely created in memory. 

Such a tree is called a decision tree (also known state-space tree). The root represents an 

initial state that precedes the search process. The nodes of any given level i of the decision 

tree represent the choices made to build the ith component of the solution vector. A node 

d in a given decision tree is said to be promising if it is part of a partial solution that still 

leads to a complete solution; otherwise, it is said to be unpromising. Leaf nodes represent 

either dead-ends or complete solutions. 
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If the current node is promising, its child is generated by adding the next component to 

the current partial solution so that it (i.e. the child) undergoes some processing. In contrast, 

if the current node turns out to be unpromising, the algorithm backtracks to the node's 

parent and assigns another value to its last component. If no such option exists, the 

algorithm backtracks to the highest level in the tree, until reaching all complete solutions. 

2.2. General scheme 

In what follows, we present the most elementary recursive form of the backtracking 

method, in which the order of visiting the decision variables as well as the choice of their 

values (instantiation) are both fixed in advance. 

Procedure Backtracking (non-instantiated-var, instantiated-var : set of variables) 

Begin 

If (non-instantiated-var = ∅) then  

// we have assigned values to all decision variables successfully 

instantiated-var is a solution as it is a consistent evaluation ; 

Else 

next-decision-var ← choose the next variable from non-instantiated-var; 

For each value ∈ D (next-decision-var) do 

next-decision-var ← value ; 

If (instantiated-var ∪ {next-decision-var} is consistent) then 

Backtracking (non-instantiated-var - {next-decision-var}, 

instantiated-var ∪ {next-decision-var}) ; 

End if 

End for 

End if 

End 

The backtracking procedure takes as input parameters two sets of decision variables, 

denoted by non-instantiated-var and instantiated-var. Variable non-instantiated-var 

keeps track of the decision variables that are not yet instantiated while variable 

instantiated-var keeps track of the decision variables that are already instantiated (i.e. with 

assigned values). Initially, the backtracking procedure is invoked in such a way that variable 

non-instantiated-var contains the set of all decision variables to be instantiated while 

variable instantiated-var is initialized with the empty set (i.e. instantiated-var = Ø). 

Through recursive calls, the execution scheme of the backtracking procedure oscillates 
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between moving forward and backtracking on previously instantiated decision variables 

(rollback), in order to take other paths guided by the new values (instances) assigned. 

3. Backtracking vs dynamic programming 

Backtracking and dynamic programming are two of the most widely used paradigms for 

solving different complex problems. Some differences are given in the table below. It 

should be noted that we will not provide a comparative between backtracking and greedy 

methods as the latter can be seen as a branch in the state tree for the former. 

Feature Backtracking Dynamic programming 

Feasibility It builds a solution 

incrementally, one piece at a 

time while removing those 

elements that fail to satisfy the 

constraints until finding the 

solutions. 

It makes a decision at each step taking 

into account the current problem and 

the solution to already solved sub 

problems to calculate the optimum. 

Application It always gets the sought 

solutions for CSP, 

optimization problems and 

enumerations as it cuts all 

possible paths. 

It always gets the optimal solutions for 

optimization problems as it considers 

all possible cases and then choose the 

best. 

Recursion It draws the braches of the 

state tree by eliminating 

unpromising choices and 

proceeding to promising ones 

It is based on recursive formulas that 

use previously calculated states (a 

problem is recursively defined based 

on other sub-problems). 

Space / time 

complexity 

It is more efficient as there is 

no need to store all partial 

results thanks to recursive 

calls. Nevertheless, it 

generally run slower. 

It requires a table to store all partial 

results which leads to an increase in 

space complexity. Nevertheless, it 

generally runs faster. 

Fashion It computes the solutions 

through a systematic search in 

solutions spaces according to 

a depth-first search with any 

bounding function. 

It computes the solutions in bottom-

up or top-down by synthesizing them 

as smaller optimal sub solutions. 
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4. Classic examples 

Now, we present some typical cases of backtracking algorithms applications to solve 

certain computation tasks. 

4.1. N-Queens problem 

The N-Queens problem consists in placing N chess queens on an N×N chessboard in a 

way that there will be no queens attacking each other. In other words, any solution requires 

that no two queens share the same row, column or diagonal, as shown in Figure 4.2. 

 

Figure 4.2. A typical solution for N-Queens problem using an 8×8 chessboard. 

 Problem formulation 

To solve this problem, we assume that each queen is fixed to a given column so that it can 

only change its position at rows. In the following, we specify the decision variables, their 

definition domain and the constraints imposed on them. 

– Decision variables set X = {xi = 1.. N}: each variable xi designates whether the ith 

queen is placed in a given row or not yet. 

– Domain of definition of the decision variables: D (xi = 1.. N) = {0, …, N}. If (xi = 0) 

then the ith queen is not yet placed; otherwise, it is placed at row with the value 

assigned to xi. 

– Constraints on the decision variables: we have to find all possible placements in 

such a way that: 

 The queens must be on different rows: C1 = {∀ i, j ∈ {0, 1, …, N}, if i ≠ 

j then xi ≠ xj}. 

 The queens must be on different ascending diagonals: C2 = {∀ i, j ∈ {0, 1, 

…, N}, if i ≠ j then xi + i ≠ xj + j}. 

 The queens must be on different descending diagonals: C3 = {∀ i, j ∈ {0, 

1, …, N}, if i ≠ j then xi - i ≠ xj - j}. 

The pseudo-code below describes the steps of the corresponding backtrack algorithm, 

according to the general scheme presented above. 
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Algo-back-track (X : array [1 .. N] of integers, i: integer) 

j : integer ; 

OK : Boolean ; 

Begin 

 If (i = N + 1) then 

  //X is a potential solution (valid queen placement) 

 Else   

             For j ← 1 to N do 

                                    X [i] ← j ; 

                         OK ← check-position-constraints (X, i, j) ; 

   If (OK) then 

    Algo-back-track (X, i + 1) ; 

   End if 

  End for 

 End if 

End 

 Example 

Let consider a chessboard of 4×4. The backtracking algorithm execution paths are 

illustrated in Figure 4.3. 

 

Figure 4.3. Execution paths of the backtracking algorithm on a 4×4 chessboard. 

Note that: 

– A1 = (2, 4, 1, 1) is not a solution because the queens placement is complete but not 

consistent as constraint C1 is not satisfied. 

– A2 = (1, 3, -, -) is a promising partial evaluation while A3 = (1, 3, 3, -) is an 

unpromising partial evaluation. 

– A4 = (2, 4, 1, 3) is a solution. 
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4.2. Graph coloring problem 

Let consider an undirected graph G and a given number m. It is asked to determine all 

graph coloring configurations for graph G using m colors so that no two adjacent vertices 

are colored with the same color. Here, coloring a graph means assigning colors to vertices. 

 Problem formulation 

This is a CSP, for which we need to specify the decision variables, their definition domain 

and the constraints imposed on them. Let S = {s1, s2, .., sn} be a set of n vertices, m be the 

maximum number of colors and M [1 .. n, 1 .. n] be the adjacency matrix for graph G. 

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether vertex si 

is colored or not yet. 

– Definition domain of the decision variables: D (xi = 1.. n) = {0, 1, …, m}. If (xi = 0) 

then si is not yet colored; otherwise, it is colored with the value assigned to xi. 

– Constraint on the decision variables: C = {∀ si, sj ∈ S if M [i, j] = 1 then xi ≠ xj} 

The pseudo-code below describes the steps of the corresponding backtrack algorithm, 

according to the general scheme presented above. 

Global variables 

Constant m; 

M : array [1 .. n, 1 .. n] of integers ; 

Algo-back-track (X : array [1 .. n] of integers, i: integer) 

i : integer ; 

OK : Boolean ; 

Begin 

 If (i = n + 1) then //X is a potential solution (valid graph coloring) 

 Else 

  For j ← 1 to m do 

                      X [i] ← j ; 

                     OK ← check-color-consistency (X, i, j) ; 

                     If (OK) then 

    Algo-back-track (X, i + 1) ; 

   End if 

  End for 

 End if 

End 
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Example 

Let G be the graph given in Figure 4.4 and m = 4 is the maximum number of colors. 

 

Figure 4.4. A typical graph with four vertices and five edges. 

Note that: 

– A1 = (2, 4, 1, 0) is a partial evaluation as x4 does not refer to any color. 

– A2 = (1, 3, 2, 2) is not a solution because it is not a consistent evaluation as the 

constraint on adjacent vertices coloring is not satisfied. 

– A3 = (2, 4, 1, 3) and A4 = (2, 1, 2, 3) are potential solutions with respect to the 

constraints on adjacent vertices coloring. Even so, it is possible to compare 

between the different solutions according to the total number of colors used, thus 

keeping those colored using a smaller number. 

4.3. Modified knapsack problem (inspired from the original formulation) 

In this version of the knapsack problem, it is asked to purchase a subset from a set of n 

items with given values and weights. Each item i is worth vi and weighs wi. The aim is to 

maximize the number of purchased items while taking into account that the maximum 

capacity of the container is W and the purchase budget is B. 

 Problem formulation 

This is a CSP that requires optimizing an objective function (the number of purchased 

items). Therefore, we need to specify the decision variables to solve, their domain of 

definition and the constraints imposed on them, in addition to the objective function to 

be optimized. 

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether item i is 

chosen to be purchased and therefore put in the container or not. 

– Domain of definition of the decision variables: D (xi = 1.. n) = {0, 1}; if (xi = 1) then 

item i is purchased and put in the container and quite the opposite for xi = 0. 

– Constraints on the decision variables: we have to maximize the number of 

purchased items: 
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f (x) = ∑ xi

  n

i = 1

 

Subject to: 

 C1: ∑ wi × xi ≤ C n
 i = 1  

 C2: ∑ vi × xi ≤ Bn
i=1  

The pseudo-code below describes the steps of the corresponding backtrack algorithm, 

according to the general scheme presented above. We note here that it is possible to make 

some code optimizations in order to improve its overall complexity (e.g. adaptive 

computing of the price and weight for partial evaluations). 

Global variables 

nb-max : initialized to 0 ; 

X-max : array [1 .. n] of integers ; 

Algo-back-track (X : array [1 .. n] of integers, i: integer) 

weight, price, nb, j : integer ; 

Begin 

 If (i = n + 1) then //X is a potential solution but not necessarily optimal 

  nb ← ∑ 𝑥𝑗
𝑛
𝑗=1  ; 

  If (nb > nb-max) then 

                                     nb-max ← nb ; 

                                     X-max ← X ; //X is better than current optimal solution. 

  End if 

 Else 

  For j ← 0 to 1 do 

                         X [i] ← j ; 

                         weight ← ∑ 𝑤𝑗𝑥𝑗
𝑖
𝑗=1  ;  

                                    price ← ∑ 𝑣𝑗𝑥𝑗
𝑖
𝑗=1  ; 

                         If (weight ≤ W AND price ≤ B) then 

    Algo-back-track (X, i + 1) ; 

   End if 

  End for 

 End if 

End 



Chapter 04                                                        Backtracking 

 

51 

 Example 

Consider a container of a maximum capacity W = 10, a budget B = 20 and a set of 4 items 

whose values and weights are given in the table below. 

Item id 1 2 3 4 

Weight 5 3 3 2 

Value 7 5 8 7 

Note that: 

– A1 = (0, 1, 1, 0) is a potential solution but not optimal since it includes only two 

items. 

– A2 = (1, 1, 1, 0) is not a solution because it is not a consistent evaluation as the 

constraint on weight is not satisfied. 

– A3 = (1, 1, 0, 1), A4 = (1, 0, 1, 1) and A5 = (0, 1, 1, 1) are optimal solutions with respect 

to the number of contained items; it is possible to store them in a list. Even so, it 

is possible to compare between these solutions by involving the total price and / 

or the total weight of the chosen items, thus keeping the solutions with the smallest 

total price and / or total weight. 

4.4. Subset-sum problem 

The subset sum problem is an important decision problem in complexity and cryptology 

fields. The problem is described as follows: let S be a set of n integers: S = {s1, s2, .., sn}. 

The goal is to find all subsets of set S whose elements sum is equal to a given integer d. 

 Problem formulation 

This is a CSP; thus, we need to specify the decision variables, their definition domain and 

the constraints imposed on them. 

– Decision variables set X = {xi = 1 .. n}: each variable xi designates whether element 

si is considered for addition or not. 

– Domain of definition of the decision variables: D (xi = 1.. n) = {0, 1}; if (xi = 1) then 

element si will be considered for addition and quite the opposite for xi = 0. 

– Constraint on the decision variables: C = {C1: ∑ si × xi = d n
 i = 1 }. 

The pseudo-code below describes the steps of the corresponding backtrack algorithm, 

according to the general scheme presented above. 
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Global variables 

Constant d ; S : Set of n integers ; 

Algo-back-track (X : array [1 .. n] of integers, i : integer) 

s, j : integer ; 

Begin 

 If (i = n + 1) then //X is a potential solution 

                         s ← ∑ 𝑠𝑗𝑥𝑗
n
𝑗=1  ; 

                         If (s = d) then //X is a solution 

   End if 

 Else 

  For j ← 0 to 1 do 

                         X [i] ← j ; 

                         s ← ∑ 𝑠𝑗𝑥𝑗
𝑖
𝑗=1  ; 

                         If (s ≤ d) then 

    Algo-back-track (X, i + 1) ; 

   End if 

  End for 

 End if 

End 

 Example 

Let consider a set S = {2, 4, 6, 10, 12} and given integer d = 12. Note that: 

– A1 = (1, 0, 0, 0, 1) is not a solution because it is not a consistent evaluation as the 

sum of elements is not equal d = 12. 

– A2 = (1, 0, 0, 1, 0) and A3 = (1, 1, 1, 0, 0) are solutions. Even so, it is possible to 

compare between the different solutions according to the cardinal of the resulting 

subsets, thus keeping those with the smallest cardinal. 

5. Improving the basic scheme of backtracking algorithms 

Although backtracking easily iterates through all subsets or permutations of a set, their 

efficiency requires pruning dead or redundant branches whenever it is possible. This is due 

to the fact that CSP are often NP-complete. The general performances of the backtracking 

procedure depends mainly on: 

– Problem formulation as well as the resulting possible branches through which the 

backtracking algorithm goes. 
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– Representation of solutions regarding the order in which the nodes making up the 

branches of solutions are visited (orders of the variables and values assignment). 

Next, we show how to make improvements to the backtracking search process by 

involving two techniques: anticipation and heuristics. 

5.1. Anticipation 

To improve the algorithm presented in section 2.2, one solution is to anticipate the 

consequences of the partial evaluations under construction on the domains of the variables 

which do not yet take values (empty variables). Indeed, we can check whether an empty 

variable xi no longer has a value in its domain D (xi) so that it leads to a locally consistent 

state (i.e. the current  partial evaluation remains still consistent). If so, there is no need to 

continue developing this branch, and therefore go back immediately to explore other 

possibilities. One way to implement this principle is to filter, at each stage of the search 

process, the domains of the unaffected variables by removing the "locally inconsistent" 

values. Depending on the number of empty variables, filtering can be performed at 

different levels of local consistency, which reduces more or less the domains of the 

variables, but which also takes more or less time. 

In summary, the principle of anticipation consists in modifying the backtracking algorithm 

presented in Section 3, by simply adding a filtering step each time a value is assigned to a 

variable, which detects and thus avoids conflicting assignments as early as possible. 

5.2. Heuristics 

The algorithm presented in Section 2.2 chooses, at each step, the next variable to instantiate 

among the set of variables that are not yet instantiated; then, once the variable is chosen, 

it tries to instantiate it according to its domain values. Thus, it does not say anything about 

the order in which the variables should be instantiated, nor about the order in which the 

values should be assigned to the variables. These two orders help considerably change the 

efficiency of backtracking algorithms. Indeed, let imagine that, at each step, we have the 

advice of a "know-it-all – oracle" who tells us which value to choose without ever making 

a mistake; in this case, the solution would be found without ever turning back. 

Unfortunately, satisfying a CSP on finite domains is generally an NP-complete problem; 

thus, it is more than unlikely that this 100% reliable oracle could never be "programmed". 

To deal with this issue, it is possible to rely on heuristics so as to determine the order in 

which the variables and the values should be considered. A heuristic is an unsystematic 

rule (in the sense that it is not 100% reliable) which gives us indications on the direction 

to take in the state-tree. The heuristics concerning the order of instantiation of values 
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depend generally on the considered problem and consequently are difficult to generalize. 

On the other hand, there exist some heuristics to order the instantiation of variables which 

very often helps speed up the search process. The general idea is to instantiate the most 

"critical" variables first, i.e. those which are involved in many constraints and/or which 

only take very few values. The order of instantiation of variables can be: 

– static, if it is fixed before starting the search. For example, the variables can be 

ordered according to the number of constraints relating to them. The idea is to 

instantiate the most constrained variables first, i.e. those which are involved in a 

large number of constraints. 

– or dynamic, if the next variable to instantiate is chosen dynamically at each step 

of the search. For example, the "first-fail" heuristic consists in choosing, at each 

step, the variable whose domain has the smallest number of values locally 

consistent with the current partial evaluation. This heuristic is often combined with 

anticipation algorithms to filter the domains of the variables by keeping only the 

values that satisfy a certain level of local consistency. 

6. Advantages and drawbacks of the backtracking method 

Backtracking algorithms have some advantages, including: 

 Simplicity: backtracking algorithms are easier to describe and code than other 

algorithms. 

 Efficiency: the search for solutions by a backtracking algorithm is used to explore 

a tree of choices in an adaptive way without the need to build it completely. This 

is because the branches are built and destroyed as a result of moving forward and 

moving backward (rollbacks), respectively. 

 Performance: backtracking algorithms allow systematic checking of all potential 

evaluations of the problem. This makes it possible to retain all potential solutions, 

including the optimal solutions in the case of optimization problems. 

Backtracking algorithms also have some drawbacks; we cite as examples: 

 Algorithmic complexity: the search for a solution by a backtracking algorithm is 

used to explore a tree of choices where it must sometimes be completely traversed. 

This would highly increase the process cost in terms of time complexity, depending 

on problems size. 

 Difficulties induced by recursion: backtracking algorithms often lend 

themselves to recursive writing. This may lead to high runtime stack usage and 

resource overflow caused by recursive calls. 
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Chapter V: Probabilistic methods 

 

Objective: 

This chapter aims to present the principles, elements and theoretical basis of 

probabilistic methods (randomized algorithms). In particular, it emphasize the 

generation of pseud-random numbers due to their role in the design of randomized 

algorithms. This chapter also discusses their categories as well as their implication 

in solving some typical examples. 

 

1. Deterministic algorithms vs probabilistic algorithms 

An algorithm is said to be deterministic if the computation process always produces the 

same output each time it receives the same input (i.e. the same data set). This is because the 

algorithm always goes through the same sequence of states. In other words, only the 

example to be solved and the description of the algorithm (i.e. the set of instructions) 

determine the sequence of calculations performed, without resorting to other external 

factors such as random variables. 

Nevertheless, by only relying on determinism, certain restrictions or even constraints can 

be imposed. Indeed, for some situations, one must relax the requirements by limiting 

oneself to admitting approximate results. In this case, the execution of the algorithm 

involves probabilistic choices guided by random selections (e.g. heads or tails of coin toss). 

Hence, we talk about a probabilistic algorithm (non-deterministic or even stochastic) whose 

execution uses a source of randomness by involving data obtained at random (random 

variables). As a result, the computation process produces different outputs each time it 

receives the same input due to the fact that it goes through various sequences of states. 

In many situations, probabilistic algorithms are useful and can even be accurate. Let's take 

the example of a box containing n bricks of which approximately 10% are of size 1×2. 

Hence, we want to get a brick of size 1×2 by hand. By using a deterministic algorithm, we 

check the bricks one by one until finding a sought brick. Indeed, with a bit of luck, it may 

happen that no brick of size 1×2 is got on the first attempts, thus testing almost all the 

bricks before managing to find the desired one. The time complexity of such an operation 

is O (n). By relying on probabilistic algorithms such as the algorithms based on Las Vegas 

or Monte Carlo approaches, it is possible to get a good answer with a higher probability. 
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2. Random and pseudo-random number generation 

The simulation of a stochastic model requires the existence of a source of "random" 

numbers in order to generate the values taken by the random variables involved in the 

definition of the model. These numbers are generally generated according to a sequence 

of random numbers U1, U2, … playing the role of uniform independent identically 

distributed random variables over the interval [0, 1]. Such numbers can be obtained by 

physical processes such as the lottery wheel and the lighting at irregular intervals of a disc 

divided into 10 isometric sectors and numbered from 0 to 9. 

However, in practice, we usually deal with pseudo-random numbers to designate random 

numbers, which in fact play a similar role to real sequences of identically distributed 

independent random variables. 

2.1. Uniform distribution of numbers 

Let a and b be two real numbers. The function uniform (a, b) returns a real number x 

chosen randomly, uniformly and independently, such that a ≤ x < b. 

Over integers i and j, uniform (i, j) returns a random integer k such that i ≤ k ≤ j, usually 

with probability 1/(j – i + 1). 

The link between uniform (integers) and uniform (reals) is that uniform integers (i, j) = 

⌊uniform reals (i, j + 1)⌋. 

On a non-empty finite set X, uniform (X) returns a randomly chosen element from X, 

usually with probability 1 / |X|. 

2.2. Algorithmic pseudo-random number generators 

Pseudo-random numbers refer to random numbers that are able of being generated as a 

random-looking sequence from a seed (known also as germ). A sequence of numbers is 

said to be pseudo-random if it is generated deterministically but appears to have been 

generated randomly. A pseudo-random number generator is an algorithm implemented by 

a function which returns a new random numeric value on each call. The sequence of values 

returned must have good statistical properties so that it can be considered as a sequence 

of independent random variables with uniform distribution in a given interval. 

Generally speaking, most algorithmic methods for generating pseudo-random numbers are 

characterized by a (S, f, g), where: 

– S is a finite set, 

– f is an application from S to itself, 

– g is a function from S over [0, 1]. 
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The generator works by iterating over function f from an initial value s0 ∈ S, called seed or 

germ, chosen by the user. Sometimes, the seed has to satisfy some constraints in addition 

to being an element of set S. By noting (xn) n ≥ 0 as the list of successive values (between 0 

and 1) returned by the generator, we have: xn = g (f ∘…. ∘ f (s0)). 

In practice, the generator keeps in memory only its current state sn ∈ S, initialized by s0, 

and updated during each new call by means of the recursive formula sn = f (sn-1); the value 

returned is actually equal to g (sn). Thus, the choice of seed entirely determines the 

sequence of the pseudo-random numbers produced by the generator. Once the seed is 

chosen, nothing random remains in the functioning of the generator whose outputs are 

nevertheless supposed to mimic independent random variables with a uniform law on [0,1]. 

2.3. Examples of pseudo-random number generators 

2.3.1. The Von Neumann method 

Proposed by Von Neumann in 1946, this pseudo-random number generator is known as 

the middle-square method. It is considered as the first method for automatically generating 

pseudo-random numbers. Today, it is very little used or even unused as several more 

efficient techniques have emerged; thus, it is presented only for historical interest. The 

principle of this generator is simple: choose a number, square it and finally take the digits 

in the middle to generate a pseudo-random number. The result serves as a seed for 

generating the next pseudo-random number. The pseudo-code below summarizes the 

steps of this method. 

Von Neumann's method for generating pseudo-random numbers 

1. k ← initialize the seed of the generator with a random number of n digits ; 

2. r ← k2 ; 

3. If (number of digits of r < 2 × n) then 

Pad with leading zeros until the number of digits of r becomes 2 × n ; 

End if 

4. r' ← extract the n middle digits of r ; 

5. k ← r' ; // r' serves as a seed for generating the next pseudo-random number 

6. Start from Step 2. 

 Example 

Consider the number 1111, hence n = 4. 

1. (1111)2 = 01234321 
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2. We extract the n middle digits: 2343, which represents the output of the generator. 

3. (2343)2 = 05489649 

4. We extract the n middle digits: 4896 (the next pseudo-random number). 

5. (4896)2 = 23970816 

6. We extract the n middle digits: 9708. 

7. … and so on. 

Starting from seed 1111, the following sequence of pseudo-random numbers is generated: 

2343, 4896, 9708, 2452, 0123, 0151, 0228, 0519, 2693, 2522, 3604, 9888, 7725, 6756, … 

Although this method is simple in its writing, the period of the middle square is small. In 

addition, the outputs may sometimes produce dead-ends thus constituting an absorbing 

state of the algorithm (e.g. the sequence 0000). 

2.3.2. Fibbonacci-based method 

This method uses the Fibonacci sequence modulo M (the maximum desired value), 

according to the recursive formula: xn = (xn-1 + xn-2) mod M; each term of the sequence is 

the sum of the two terms which precede it modulo a given number M. It is therefore an 

additive congruence. The value of M is fixed beforehand; likewise, the initial values x0 and 

x1 are given as input so that they constitute a seed for generating the pseudo-random 

numbers which follow. 

 Example 

Starting from numbers x0 = 1 and x1 = 2, and M = 100 as modulo, the resulting sequence 

of pseudo-random numbers is as follows: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 44, 33, 77, 10, 87, 

97, 84, 81, 65, 46, 11, 57, 68, 25, 93, 18, 11, 29, 40, ….. 

Although this generator is very simple to implement and consumes few resources, it 

nevertheless shows a strong correlation between successive values. 

2.3.3. The congruent linear method 

It represents the most widely used algorithm for generating pseudo-random numbers; its 

principle is based on a very simple recursive formula: xn+1 = (a×xn + c) modulo m. This 

formula also allows making a jump of step k between the terms, as follows: 

xn+k = (a × k × xn + (ak - 1) × c / (a - 1)) modulo m 

 m : the modulo defining the largest value supported by this system (m > 0) 

 a : the multiplier (0 ≤ a < m) 

 c : the jump (the step) (0 ≤ c < m) 

 x0 ∶ the starting value which actually represents the generator seed (0 ≤ x0 < m). 
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 Example 

By using a seed x0 = 1, a multiplier a = 2, a jump c = 3 and a modulo m = 100, the resulting 

sequence of pseudo-random numbers is as follows: 1, 5, 13, 29, 61, 25, 53, 9, 21, 45, 93, 

89, 81, 65, 33, 69, 41, 85, 73, 49, 1, 5, 13, 29, … 

2.4. Interests of algorithmic sources 

Algorithmic methods for generating pseudo-random numbers are interesting for several 

reasons, among which we cite: 

– repeatability: once the seed has been chosen by the user (and stored), it is possible 

to fully reproduce the sequence of pseudo-random numbers generated. This is very 

important, for example, to check the results obtained by simulation or to debug 

simulation codes. 

– ease of use: in most implementations, the generation of pseudo-random numbers 

is fast and without any limitation with respect to the number of calls to the 

generator used. 

– standardization: using a standardized procedure for generating pseudo-random 

numbers allows having a reliable information on the quality and performance of 

the contributions made by various researchers and users, in the form of scientific 

publications and documentation. 

2.5. Application fields of pseudo-random numbers 

Pseudo-random numbers are used in various applications fields, among which we cite: 

– Confidentiality of exchanges on wireless networks: confidentiality during 

exchanges through a wireless network is a key aspect for protecting the security of 

the data circulating. In this context, most protection mechanisms are based on 

defining encryption keys of different lengths. These keys are specified at access 

point and client level so that they create pseudo-random numbers used to encrypt 

the transmitted data, and therefore ensure their confidentiality. 

– Encryption systems: cryptanalysis ensures a high level of reliability regarding the 

encryption methods adopted, in particular stream ciphers. The latter consists in 

adding - bit by bit - to the clear message a pseudo-random binary sequence of the 

same length. 

– Simulation based on queuing theory: queuing theory is a mathematical theory 

in the field of probability, which studies the optimal solutions for managing 

queuing (queues). The incoming flows and service mechanisms are usually 

simulated using pseudo-random numbers. 
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3. Categories of probabilistic algorithms 

In classical algorithms, we are often interested in two important aspects: 

– The correctness: does the algorithm return the correct result? 

– Termination and complexity: does the algorithm always terminate and in how 

many operations with respect to the inputs size? 

In probabilistic algorithms (randomize algorithms), these aspects are probabilized. 

Probabilization of the results affects the correctness of the algorithm in such a way that 

the complexity is maintained with respect to the corresponding deterministic algorithm 

(the execution time is the same for both algorithms) but not the result. In contrast, the 

probabilisation of the termination affects the execution time in such a way that the 

correctness of the result is maintained with respect to the corresponding deterministic 

algorithm (the result is the same for both algorithms) but not the execution time. In the 

following, four categories of randomized algorithms are presented along with explanatory 

examples on their application to problem solving. In fact, this classification is a 

controversial topic as some researchers and scholars claim that there are four classes 

(numerical algorithms, Sherwood algorithms, Monte Carlo algorithms and Las Vegas 

algorithms) while others consider only two (Monte Carlo algorithms and Las Vegas 

algorithms) while attaching the other classes to these two classes. 

3.1. Numerical algorithms 

The answer of the algorithm is always approximate. However, its precision is all the better 

on average as the time available to the algorithm is large. This class of algorithms is used 

to approximate the solutions of numerical problems (e.g. calculating π, numerical 

integration, etc.). 

 Example: throwing darts at a square target (calculation of π) 

The experiment consists of throwing n darts at a square target and counting the number k 

of those falling inside the circle inscribed in this square. Let r denote the radius of the circle 

(see Figure 5.1). 

 

Figure 5.1. Square target of dimension 1× 1 cm. 
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If we randomly and uniformly choose a point p in the square, we ask ourselves what is the 

probability that point  p is in the circle. The answer is obvious: πr2 / 4r2 = π / 4. 

Now, we choose n points randomly, uniformly and independently in the square, such that 

the number of points in the circle is denoted by k, hence E (k) = nπ / 4. According to the 

weak law of large numbers, we have: lim
n→∞

|k - E(k)| ≥ ε . It follows that: π ≈ 4k / n. This 

experiment is simulated by the algorithm given below. The returned approximation of π is 

all the better as n is large. 

Function Darts (n : integer) : real. 

Begin 

k ← 0 ; 

For i ← 1 to n do 

    //Throw a dart 

    x ← uniform (0, 1) ; 

    y ← uniform (0, 1) ; 

    //Check if it is in the circle 

   If (x2 + y2 ≤ 1) then 

        k ← k + 1 ; 

   End if 

End for 

Return 4×k / n ; 

End 

3.2. Sherwood's algorithms 

These algorithms always return an exact answer. For such an algorithm, there exists a 

deterministic algorithm already known to solve the problem treated but which is much 

faster on average than in the worst case. Thus, the use of randomness aims to reduce this 

difference between good and bad cases. 

 Example: search for the kth smallest element of an array of n elements. 

The strategy of the probabilistic algorithm for finding the kth smallest element of an array 

T of n elements consists in randomly choosing a pivot among the elements of array T, as 

illustrated in the following pseudo-code. 
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Function Sherwood-selection (T [1 .. n]: array, k: integer): element from T 

Begin 

//Return the kth smallest element of T ; we assume that 1 ≤ k ≤ n 

i ← 1 ;  

j ← n ; 

While (i < j) do 

m ← T [uniform (i, j)] ; 

//pivot around m: after this operation, the elements of T [i ..u -1] are all lower than 

m, those of T [u .. v] are equal to m, and those of T [v+1 .. j] are greater than m 

Partition (T, i, j, m, u, v) ; 

If (k < u) then 

j ← u - 1 ; 

Else 

If (k > v) then 

i ← v + 1 ; 

Else 

i ← k ;  

j ← k ; 

End if 

End if 

End while 

Return T [i] ; 

End 

3.3. Monte Carlo algorithms 

These algorithms always return an answer but not always right, i.e. they always give an 

answer that is not always accurate. This is why it is very difficult to determine whether the 

answer obtained is correct or not. The probability of success of these algorithms in terms 

of correct answer is all the better as the time available to them is large. 

 Example: majority table problem 

Let T [1 .. n] be an array of n elements. An element x is said to be majority in array T if 

and only if the number of elements whose values are equal to x is greater than n / 2. 

Similarly, array T is said to be majority if it contains a majority element. The probabilistic 
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algorithm for performing this task is given below. This algorithm is 1/2 correct and true-

biased with X = {T / T is not majority}. 

Function majority (T [1 .. n]: array): Boolean 

Begin 

//draw an item x at random 

i ← uniform (1, n) ; 

x ← T [i] ; 

// count the number k of elements equal to x 

k ← 0 ; 

For j ← 1 to n do 

If (T [j] = x) then 

k ← k + 1 ; 

End if 

End for 

Return (k > n/2); 

End 

A call to function majority on array T leads to two possible results. In the case where the 

function return true, array T is actually a majority (i.e. function majority is true-biased). 

Otherwise, we cannot draw a conclusion but probability (x is in the minority | T is 

majority) = (1 - p) < 1/2. 

3.4. Las Vegas Algorithms 

They never return an incorrect answer but they may not find an answer. Randomness is 

thus restricted to the internal control of the calculation and in no way affects the result. 

These algorithms can also solve some problems for which no efficient deterministic 

algorithms are known. 

The main element of a probabilistic nature attached to such an algorithm is typically its 

execution time. The usual definition of a Las Vegas algorithm is that only the expectation 

of the computation time is finite; the execution time is random. Therefore, the answer is 

always correct and probably fast. The probability of success of such an algorithm is all the 

better as the time available is large. The probability of a failure can be made arbitrarily small 

(close to 0) by repeating the algorithm often enough. 
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 Example: N-Queens problem 

The strategy of the adopted probabilistic algorithm consists in placing the queens randomly 

on successive lines while making sure that the queens already placed are not in conflict 

with each other. With the following algorithm, if variable success = true then array         

trial [1 .. nb-queens] contains the solution, as illustrated in the pseudo-code below. 

Algorithm place-queens-LV (nb-queens: integer) 

trial, ok : array [0 .. nb-queens] of integer ; 

cols, diag-45, diag-135 : set ; 

nb : integer ; 

Begin 

success ← true ; 

initialize arrays trial and ok with zeros ; 

initialize sets cols, diag-45 and diag-135 to ∅ 

For k ← 1 to nb-queens do 

nb ← 0 ; 

For j ← 1 to nb-queens do 

If ((j ∉ cols) and ((j - k) ∉ diag-45) and ((j + k) ∉ diag-135) then 

nb ← nb + 1 ; 

ok [nb] ← j ; 

End If 

End for 

If (nb > 0) then 

j ← ok [uniform (1, nb)] ; 

cols.add (j) ; 

diag-45.add (j - k) ; 

diag-135.add (j + k) ; 

trial [k] = j ; 

else 

success ← false ; break ; 

End if 

End for 

Return [success, trial] ; 

End 
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4. Advantages and drawbacks of randomized algorithms 

Randomized algorithms have some advantages over deterministic algorithms, including: 

 Simplicity: randomized algorithms are known for their simplicity to understand 

and implement. Moreover, many deterministic algorithms are easily convertible 

into randomized algorithms. 

 Performance: randomized algorithms are very efficient compared to deterministic 

algorithms. Indeed, for many problems, a randomized algorithm is the simplest, 

the fastest, or even both. 

 Time and space complexity: several randomized algorithms use little execution 

time and space compared to deterministic algorithms. This is because they exhibit 

superior asymptotic bounds, which makes their complexity better than that of the 

corresponding deterministic algorithms.  

Randomized algorithms also have some drawbacks; we cite as examples: 

 Reliability: this is an important issue in many applications, as not all randomized 

algorithms always give correct answers. Moreover, some randomized algorithms 

may not terminate. Therefore, reliability concerns should be handled carefully.  

 Quality: the quality of randomized algorithms depends heavily on the quality of 

the random number generator used as part of the algorithm. 

 Lack of design paradigm: unlike other paradigms, randomized algorithms do 

not rely on a single design principle. Hence, it would be better if we came to think 

of randomized algorithms as those designed using a set of clear principles. 
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Chapter VI: Approximation algorithms 

 

Objective: 

This chapter aims to give an overview of approximation algorithms while 

highlighting their principles, elements and theoretical foundation. It also discusses 

their application aspects for solving several typical examples. 

 

1. Solving NP-complete optimization problems 

An optimization problem is a problem for which there exists a set of potential solutions 

among which one must select the optimal solution. Optimization problems can be either a 

maximization or a minimization of a cost function (see the formal definition of an 

optimization problem in Section 1 of Chapter 1). 

The difficulty of solving an optimization problem depends on its complexity class. In 

particular, problems belonging to the NP-complete class are the most difficult. This is due 

to the fact that NP-complete problems do not admit algorithms that run in polynomial 

time, in order to find solutions. Indeed, although any solution of an NP-complete problem 

can be verified quickly (in polynomial time), to date, there is no efficient method to find 

such a solution. A classic example of NP-complete problems is the traveling salesman 

problem, whose goal is to determine the shortest paths to visit a large number of cities. 

Depending on the instance size of a given optimization problem, there are three main 

solving-methods: 

– The exact resolution: although this option allows finding the optimal solution to 

the problem treated, this is generally done while knowing a priori that the cost is 

most likely exponential in time. An example of such an approach is the exhaustive 

search through brute force algorithms. 

– Heuristic resolution: according to which we build a solution at a lower cost, 

hoping that it shows good performances. However, there is no guarantee on the 

quality of the result obtained. An example of such a solving-approach is greedy 

algorithms. 

– Guaranteed resolution: a solution is built at a lower cost so that its quality can be 

measured and is therefore guaranteed: approximation algorithms that we present 

and discuss throughout this chapter. 
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2. Overview on approximation algorithms 

2.1. Basic idea of approximation algorithms 

Approximation algorithms deal with NP-complete optimization problems. An 

approximation algorithm does not guarantee retaining the optimal solution but rather it 

allows getting a solution as close as possible to the optimum in a reasonable time. Some of 

the features of approximation algorithms are summarized as follows: 

– They guarantee to run in polynomial time though they do not guarantee getting the 

most effective solutions. 

– They are used to get an answer near the optimal solution. In addition, the quality 

of the retained solutions can be measured. 

– They guarantee to seek out high accuracy and top quality solutions. 

Polynomial complexity and bounded approximation factor are two desired properties for 

NP-problems. On the one hand, we can always calculate an optimal solution by 

enumerating all possible solutions but, unfortunately, the computation cost is often 

exponential in time in accordance with the growth of problems size; this has relatively little 

interest in practice. On the other hand, being able to say something about what the 

algorithm produces and guaranteeing an approximation factor regardless of the instances 

size are also two important criteria for approaching the optimal solution. This is because it 

is always possible to quickly calculate a solution arbitrarily far from the optimum (for 

example, by drawing it at random). It is important to differentiate between an 

approximation algorithm and a heuristic, especially since they both provide approximate 

solutions. The former is a polynomial time algorithm with some degree of guarantee while 

the latter does not necessarily satisfy these two features. 

2.2. Notations 

In what follows, we use the notations given below to provide definitions and formulas. 

– Π: an NP-complete optimization problem 

– I: an instance of problem Π. 

– A (Π, I ): the solution obtained for instance I of problem Π using algorithm A. 

– OPT (Π, I ): the optimal solution for instance I of problem Π. 

– COST (SOL (Π, I )): returns the objective function value for a given solution SOL 

to instance I of problem Π. 

– LB (Π, I ): a lower bound on COST (OPT (Π, I )) for instance I of minimization 

problem Π. 
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– UB (Π, I ): an upper bound on COST (OPT (Π, I )) for instance I of maximization 

problem Π. 

2.3. Performance ratio (approximation factor) 

Let A be an algorithm that deals with a given problem Π. A is a λ-approximation if: 

1. It runs in polynomial time in accordance with instances size. 

2. It always produces a solution which is, at worst, λ times worse than OPT (Π, I ). 

For a minimization problem Π, we have: ∀ I , COST (A (Π, I )) ≤ λ × COST (OPT (Π, I )) 

For a maximization problem Π, we have: ∀ I , COST (A (Π, I )) ≥ 
1

λ
 × COST (OPT (Π, I )) 

λ is called approximation factor (λ ≥ 1 and λ = 1 for optimal algorithms). 

We say that a given approximation factor λ is non-improvable if for each ε > 0, there exists 

no instance I of problem Π such that COST (A (Π, I )) ≤ (λ - ε) × COST (OPT (Π, I )). 

 Example 

Consider a minimization problem Π and an algorithm A to solve it. By considering three 

instances I, I' and I'', the table below provides the optimal solutions, the solutions retained 

by algorithm A as well as the approximation factors λ. 

Instance Optimal solution Retained solutions by A Approximation factor λ 

I 3 6 2 

I' 8 12 1.5 

I'' 6 8 1.33 

 Question: how to compare with an optimal solution that - by definition - we do not 

know how to calculate in a reasonable time? 

Overall, it is often difficult to prove that a given algorithm results in a good approximation 

factor and thus produces a good output. However, what is more important in particular is 

that the optimum should not be much better. In fact, it is not always possible to figure out 

what the optimum should be. In this case, we have to prove lower/upper bounds on the 

optimal solution. Most often, these bounds are obtained from the problem structure but 

sometimes the solving-method helps as well. 

Let I be an instance of a problem Π and A be an algorithm. We have: 

∀ I , COST(A (Π, I )) ≤ λ × LB(Π, I ) ⇒ (∀ I , COST(A (Π, I )) ≤ λ×COST(OPT (Π, I )) ∧ 

Algorithm A is an approximation algorithm of factor λ) [for a minimization problem Π ]. 

∀ I , COST(A (Π, I )) ≤ 
1

λ
 × UB(Π, I ) ⇒ (∀ I , COST (A (Π, I )) ≤ 

1

λ
×COST(OPT (Π, I )) ∧ 

Algorithm A is an approximation algorithm of factor λ) [for a maximization problem Π ]. 
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2.4. Approximation schemes 

Let A be an approximation algorithm for problem Π and ε, c ∈ ℝ+ be two constants. 

Algorithm A is polynomial time if its time complexity is polynomial in the number of 

inputs. In contrast, an algorithm is considered as pseudo-polynomial time (PPT) if its 

worst-case time complexity is polynomial in the numeric value of input (e.g. counting 

frequencies of all elements in an array). If problem Π can be solved by a pseudo-polynomial 

time algorithm A, then it is called weakly NP-complete (solving the knapsack problem 

using dynamic programming is a good example); otherwise, it is called strongly NP-

complete, unless complexity class P = complexity class NP. 

Algorithm A is said to be polynomial-time approximation scheme (PTAS) if for any given 

instance I of problem Π, approximation factor λ = (1+ε) for minimization and λ = (1 - ε) 

for maximization. ε is a parameter that denotes the upper or lower bound of the quality of 

A (Π, I ) relative to OPT (Π, I ). Thus, the difference between COST (OPT (Π, I )) and 

COST (A (Π, I )) must not exceed ε for all possible instances of problem Π. By assigning a 

value to ε, algorithm A must run in polynomial time poly (|I|). 

Likewise, algorithm A is said to be PTAS with absolute performance guarantee if for any 

given instance I of problem Π, [COST (A (Π, I )) - COST (OPT (Π, I ))] ≤ c for minimization 

and [COST (OPT (Π, I )) - COST (A (Π, I ))] ≤ c for maximization. This means that A (Π, 

I ) is at most c worse than OPT (Π, I ), in terms of objective function value (the cost 

function). 

Finally, although a PTAS algorithm runs in polynomial time in accordance with n (size of 

a given instance I of problem Π), the time complexity may grow exponentially with respect 

to ε. For instance, approximation algorithms running in O (n
 
1

ε) or O (2
 
1

ε) are still PTASs. 

To address this issue, fully polynomial time approximation scheme (FPTAS) is used to 

study a class of PTAS algorithms that run in polynomial time according to both n and 
1

𝜀
  

poly (n, 
1

𝜀
), e.g. O ( 

n α

ε β  ) with α, β ≥ 1. Intuitively, this is a guarantee that an increase of 

problem size n or an increase of approximation quality 
1

𝜀
 does not affect the runtime more 

than polynomially. 

2.5. Classification of approximation algorithms 

Depending on approximation factor equation, approximation algorithms can be classified 

into (see Figure 6.1): 

– PPTA = optimization problems admitting a pseudo-polynomial time algorithm. 
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– APX = optimization problems admitting an approximation algorithm running in 

polynomial time with a constant performance ratio. 

– PTA = optimization problems admitting a PTAS 

– FPTA = optimization problems admitting an FPTAS 

Unless complexity class P = complexity class NP, it holds that FPTA ⊆ PTA ⊆ APX. 

 

Figure 6.1. Classification of approximation algorithms. 

2.6. Hardness of approximation 

Unless complexity class P = complexity class NP, many computational problems are not 

only difficult to solve but also difficult to approximate for any given approximation factor. 

They are said to be non-approximable; the traveling salesman problem is a good example. 

Consider a problem Π and an instance I with the goal of proving that problem Π is α (|I|) 

hard to approximate (|I| represents the size of instance I). Hence, we use two well-known 

methods: gap-introducing reduction and gap-preserving reduction. 

 Gap-introducing reduction 

It aims at reducing an NP-complete decision problem Π' to problem Π. Let Π' be a decision 

problem and Π be a minimization problem (similar for maximization). A reduction h from 

problem Π' to problem Π is said to be gap-introducing if: 

1. It transforms each instance I' of problem Π' to an instance I = h (I' ) of problem 

Π, in polynomial time. 

2. There exist functions f and α such that: 

If instance I' is a "yes instance" of problem Π' then OPT (Π, I ) ≤ f (I ) 
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If instance I' is a "no instance" of problem Π' then OPT (Π, I ) > α (|I|) × f (I ) 

Theorem (proof not included). If problem Π' is NP-complete then problem Π cannot 

be approximated with a factor α. 

 Gap-preserving reduction 

It reduces a problem Π' that is hard to approximate to problem Π. Let Π' and Π be 

minimization problems (similar for maximization). A reduction h from problem Π' to 

problem Π is said to be gap-preserving if: 

1. It transforms each instance I' of problem Π' to an instance I = h (I' ) of problem 

Π, in polynomial time. 

2. There exist functions f, f', α, β such that: 

OPT (Π', I' ) ≤ f' (I' ) ⇒ OPT (Π, I ) ≤ f (I ) 

OPT (Π', I' ) > β (|I'|) × f' (I' ) ⇒ OPT (Π, I ) > α (|I|) × f (I ) 

Theorem (proof not included). If problem Π′ is non-approximable with a factor β then 

problem Π cannot be approximated with a factor α unless P = NP. 

Generally speaking, proving the hardness of approximation results requires considerable 

knowledge of the characteristics of problems. Even so, there are a few broad methods used, 

among which we cite: 

1. Use already existing hardness results and gap reductions to get hardness results for 

new problems. 

2. Amplification: some problems exhibit self-reducibility even in the sense of 

approximation. This allows using a given hardness factor to something larger. 

3. Use probabilistically checkable proofs (PCPs) and other sophisticated tools such as 

the parallel repetition theorem which establish gap reduction for some basic CSPs 

(constrain satisfaction problems). 

3. Classic examples 

In what follows, we show some examples of approximation algorithms application to solve 

typical problems while measuring the quality of the solutions retained. 

3.1. Graph-coloring problem 

The graph-coloring problem consists in determining the smallest number of colors needed 

to color the vertices of a graph, such that the vertices of each edge cannot have the same 

color. A coloring of the vertices of a given graph G = (V, E) can be seen as a function 

c : V → ℕ, such that c (u) ≠ c (v) if u and v are connected by an edge in G. The pseudo-

code below determines a coloring which is not necessarily minimal. 
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For each u ∈ V do 

Color vertex u with the smallest color not appearing on an adjacent vertices ; 

End for 

Let us apply this algorithm to graph G = (V, E) where V = {1, 2, …, 2n} such that each 

odd vertex i is connected to all even vertices j except i+1. Figure 6.2 illustrates a typical 

graph with n = 4. 

 

Figure 6.2. A typical a graph with 2n nodes (n = 4). 

The adopted algorithm uses n colors whereas two colors are enough. If we denote by 

OPT(G) the minimum number of colors necessary and by A(G) the number of colors used 

by the above algorithm, then: λ = 
𝐴 (𝐺)

OPT (G)
 = 

𝑛

2
 

3.2. Traveling salesman problem 

3.2.1. Approximation algorithm for the determination of Hamilton cycles 

In this version of the traveling salesman problem, we are interested in determining a 

Hamilton cycle (i.e. passing exactly once through each vertex) of minimum length in a 

complete graph G. Suppose that the distance matrix satisfies the triangular inequality, i.e. 

distance (x, z) ≤ distance (x, y) + distance (y, z) for any triplet of vertices x, y, z. A non-

optimal solution can be determined using the algorithm illustrated below (see Figure 6.3 

that shows a typical example of a complete graph with five vertices). 

1. Determine a minimum cost tree in G. 

2. Determine a cycle that passes exactly twice through each edge of the tree. 

3. Shorten this cycle if necessary to pass through each vertex only once. 
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Figure 6.3. Steps for the determination of Hamilton cycle of minimum length. 

We denote by OPT (G) the length of the smallest Hamilton cycle in G and by A (G) the 

length of the cycle produced by the above algorithm. It is proven that, as the minimum cost 

tree has a cost lower than or equal to OPT (G): λ = 
A (G)

OPT (G)
 ≤ 2 

3.2.2. Non-approximation results in the traveling salesman problem 

Let G (V, E) be a complete graph and w: E → ℕ be a weight function. Thus, it is asked to 

find a tour that has minimum total weight which is in fact an NP-hard problem. 

Theorem. According to this definition, the traveling salesman problem does not admit an 

approximation algorithm of any approximation factor α in polynomial time in n (number 

of vertices), unless P = NP. 

To prove the approximation hardness, we rely on a gap-introducing reduction from 

Hamilton cycle (a cycle using each vertex only ones) due to the fact that the determination 

of whether a given graph G' has a Hamilton cycle or not is NP-complete. The idea is to use 

the proof by absurd starting from the assumption that there is an α-approximation 

algorithm A, as shown in Figure 6.4. 

 

Figure 6.4. Steps for proving the non-approximation of the traveling salesman problem. 

Let's build a polynomial algorithm A deciding Hamilton cycles. 

Adding weights: based on graph G (V, E), we define G' (V, E) as a complete graph such 

that w (e) = 1 if e ∈ E, otherwise w (e) = 1 + α × n (n = |V|) with α ≥ 0. 

– If graph G' admits an optimal tour of cost n (i.e. OPT (G' ) = n) then graph G 

admits a Hamilton cycle. 
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– If graph G' admits a tour of cost ≤ α × n, then graph G admits a tour of cost n. 

Likewise, if graph G' admits a tour of cost > α × n, then graph G does not admit a 

tour of cost n. 

Clearly, unless P = NP, algorithm A cannot be a polynomial algorithm, and therefore 

cannot be an α-approximation. 

3.3. Vertex cover problem 

This problem consists in modeling and solving a system for which it is asked to place a 

minimum number of guards to monitor all the corridors. To this end, one generally involve 

graph theory where a cover of vertices must be calculated. 

Let G = (V, E) be a graph. A vertex cover is a subset C ⊆ V such that for each (u, v) ∈ E, 

u ∈ C or v ∈ C (see Figure 6.5). 

 

Figure 6.5. A typical graph illustrating a vertex cover. 

Solving this problem can be done through the naive algorithm below; Figure 6.6 gives the 

result of its execution on a typical graph. 

Naïve algorithm 

C ← ∅ ; 

E' ← E ; 

While (E' ≠ ∅) do 

e ← the first element of set V \ C; 

E' ← E' ∪ {edges a = (u, v) / u = e or v = e with a ∉ E'} ; 

C ← C ∪ {e} ; 

End while 
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Figure 6.6. Execution result of the naïve algorithm on a typical graph. 

Now, we proceed to an approximation algorithm, in order to solve this problem. This 

algorithm is based on the concept of coupling in graph theory. Thus, we first introduce 

some definitions that would help to better understand the adopted approximation 

algorithm. Let G = (V, E) be a graph. 

– A set M ⊆ E is a matching if for any vertex u ∈ V, there exists at most one edge 

(a, b) ∈ M with u = a or u = b. One can easily show that |M| ≤ |C|, for any 

matching M and any vertex cover C. 

– A matching M is maximum if for each matching M' we have |M'|≤ |M|. 

– A maximal matching for inclusion is a matching M such that for each M' ⊆ E, 

M ⊆ M' implies that M' is not a matching. It is demonstrated that a maximum 

matching for cardinal is maximum for inclusion. 

 

Figure 6.7. Typical examples of maximal matching for inclusion. 

The approximation algorithm is described by the following pseudo-code: 

Approximation algorithm for vertex cover 

M ← a maximal matching for inclusion ; 

C ← {vertices of the edges of M} ; 

Return C ; 
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It is proven that the result C returned by the approximation algorithm is a vertex cover. It 

is also proven that this algorithm admits an approximation of factor λ = 2, as illustrated in 

the graphs illustrated in Figure 6.8. 

 

Figure 6.8. Typical examples of vertex cover. 

3.4. Bin packing problem 

Let L = {l1, l2, …, ln} be a list of n items of sizes [s1, s2, …, sn] respectively in such a way 

that 0 < si = 1 .. n ≤ 1. We also assume an infinite supply of bins such that the size of each 

unit is 1. The aim is then to pack the items of list L using as few bins as possible. This is an 

NP-complete optimization problem. There are two versions to this problem depending on 

how the elements arrive and are placed in bins. 

– Online version: this version assumes that the items arrive sequentially one by one 

in an unknown order. Thus, each item must be put in a bin before considering the 

next item. 

– Offline version: all items of list L are given in advance. 

The online version of this problem would be more difficult since it does not always lead to 

the optimal solution. For instance, let consider a list L of n = 2 × m items: m small items 

of size 0.5 - ε and m large items of size 0.5 + ε. The optimal solution consists in packing 

the items as pairs (small item, large item), thus leading to use m bins. However, in the online 

version of the problem, there is no knowledge about the future items as well as the way in 

which they will arrive; this makes it difficult to build an optimal solution. Indeed, with a bit 

of luck, the small items may arrive before the larger ones. In this case, we will need about 

of 3/2 m bins to pack all items according to their arrival (the small items are packed before 

the large ones). In what follows, we present simple approximation algorithms for both 

online and offline versions of the problem. To measure the performance of a given 

approximation algorithm A, we denote by A (L) and OPT (L) the number of bins used when 

algorithm A is applied to list L and the optimal number for list L, respectively. 
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3.4.1. Approximation algorithms for the online version of the problem 

We consider three well-known online algorithms in the literature that use at most twice the 

optimal number of bins. These algorithms use the following general scheme. 

While (not end of items arrival) do 

//carry out a capacity check of the bins already open 

If (the new item can be packed in one of the bins already open) then 

1. put it in one of these bins; 

else 

2. open a new bin to pack the new item; 

End if 

End while 

The considered algorithms differ in the criterion used to choose the open bin for packing 

the new item in step 1, as follows: 

 Next-fit strategy (NF): the NF strategy always keeps the last used bin open to 

check whether it is suitable for packing the new item or not. If so, the new item is 

packed, which only results in a decrease in the remaining capacity of the bin. 

Otherwise, a new bin is opened while the last one is closed. Note that NF can be 

generalized to w-NF by keeping the w last bins open (sliding window of size w 

through the bins used). NF is simple as it requires a linear time O (n) and a bounded 

space O (1) (it only keeps a single open bin in memory). Moreover, it is proven that 

NF admits an approximation of factor λ = 
𝑁𝐹 (𝐿)

OPT (L)
 ≤ 2 (i.e. 2-approximate). Indeed, 

if k is the optimal number of bins, then NF never uses more than 2×k bins. In 

particular, there exist sequences that force NF to use 2×k - 2 bins. 

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are 

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The NF algorithm uses 5 bins to pack 

the items as follows: bin1(l1, l2), bin2(l3), bin3(l4, l5), bin4(l6) and bin5(l7). 

 First-fit strategy (FF): this strategy can be seen as an improvement of the NF 

algorithm by keeping all used bins open in the order in which they were opened, 

until the packing task is finished. Thus, FF scans the bins in an attempt to pack the 

new item in the first bin that fits. Otherwise, a new bin is opened in order to pack 

the new item. The FF requires O(n2) time which is reduced to O(n Log n) using 

proposer data structures (self-balancing binary search trees) and O(n) for space 

complexity (it keeps all bins in memory). It is proven that FF admits an 
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approximation of factor λ = 
𝐹𝐹 (𝐿)

OPT (L)
 ≤ 1.7. Indeed, if k is the optimal number of 

bins, then FF never uses more than 1.7 × k bins. 

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are 

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The FF algorithm uses 4 bins to pack 

the items as follows: bin1(l1, l2, l5), bin2(l3, l6), bin3(l4) and bin4(l7). 

 Best-fit strategy (BF): this strategy also keeps all used bins open until the packing 

task is finished. The BF scans the bins in an attempt to pack the new item in the 

tightest spot (i.e. the bin with a remaining capacity close as much as possible to the 

item size). Otherwise, a new bin is opened in order to pack the new item. Similarly 

to FF algorithm, the BF requires O(n2) time that can be reduced to O(n Log n) 

using self-balancing binary search trees and O(n) for space complexity (it keeps all 

bins in memory). It is proven that BF admits an approximation of factor λ = 

𝐵𝐹 (𝐿)

OPT (L)
 ≤ 1.7. If k is the optimal number of bins, then BF never uses more than 

1.7×k bins. 

Example: let L = {l1, l2, l3, l4, l5, l6, l7} be a list of 7 items whose sizes are 

respectively [0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8]. The BF algorithm uses 4 bins to pack 

the items as follows: bin1(l1, l2, l5), bin2(l3), bin3(l4, l6) and bin4(l7). 

3.4.2. Approximation algorithms for the offline version of the problem 

By considering that all items of list L are known in advance, it is expected to do better. 

Exhaustive enumeration (e.g. through backtracking algorithms) is the best way to find the 

optimal solution. However, there is no efficient algorithm that solves this problem in a 

polynomial time due to NP-completeness. One way to overcome some of the difficulties 

caused by online algorithms is to sort the input sequence of items before packing them in 

bins, as given in the pseudo-code below. 

1. Sort list L according to a descending order of items size. 

2. Apply an online algorithm on the sorted list L. 

Next, we present the algorithms discussed in the previous section (i.e. NF, FF and BF) in 

the context of the offline version of bin packing problem, as follows: 

 Next-fit-decreasing (NFD): the NFD first sorts list L according to a descending 

order of items sizes and then call the NF algorithm. It is proven that NFD admits 

an approximation of factor λ slightly less than 1.7 in the worst case. 

 First-fit-decreasing (FFD): the FFD first sorts list L according to a descending 
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order of items sizes and then call the FF algorithm. It is proven that FFD admits 

an approximation of factor FFD (L) = 
OPT (L)×11 + 6

9
. 

 Best-fit-decreasing (BFD): the BFD first sorts list L according to a descending 

order of items sizes and then call the BF algorithm. It is proven that BFD admits 

an approximation of factor FFD (L) ≤ 
OPT (L)×6 

5
 + 1. 

3.5. 0/1 Knapsack problem 

Consider a knapsack that can hold up to a maximum weight W ∈ ℕ and a set of n objects 

X = {x1, ..., xn}, each associated with a weight (xi) ∈ ℕ and a value (xi) ∈ ℕ. For each 

subset S ⊆ X, we define weight (S) = ∑  weight (x) x ∈ S  and value (S) = ∑  value (x) x ∈ S . 

The goal is to find a subset S ⊆ X that maximizes objective function value (S) without 

exceeding the knapsack capacity W (i.e. weight (S) ≤ W). It should be noted that the greedy 

algorithm shown in Section 4.3 in chapter 1 represents a 2-approximation algorithm. Thus, 

in the following, we present only the (1-ε)-approximation algorithm. 

The knapsack problem admits a PPT algorithm based on dynamic programming with time 

complexity O (n × V*); n is the number of objects in set X while V* is their maximum value 

(i.e. value (X)). Note that n × Vmax is a bound on the optimal solution; such that 

Vmax = max
𝑖 = 1 ..  𝑛

value (xi). As a result, the time complexity is O (n2 × Vmax). 

We define matrix M [1..n +1, 1..V* +1]; for each 0 ≤ i ≤ n and 0 ≤ v ≤ V*, the 

corresponding recursive formula is given as follows: 

 

M [i, v] = { 
 

+∞                       if i = 0 or v = 0 

M [i-1, v]                if v < value (xi) 

min (M [i-1, v], weight (xi) + M [i-1, v- value (xi)]) otherwise      

 

An entry M [i, v] is the minimum weight of objects from subset {x1, ..., xv} such that the 

value is exactly v. In the case where there is no such subset, M [i, v] = +∞. The optimal 

solution OPT (M) = max
0 ≤ v ≤ V*

{p / M [n, v] ≤ W}. 

The recursive formula shows that each entry M [i, v] only depends on previous entries (i.e. 

it is calculated in bottom-up) which means that OPT (M) is determined afterwards. 

However, V* can be arbitrarily large which means that the runtime is polynomial as long as 

V* is polynomial in n. Therefore, we need for an FPTAS algorithm that runs in polynomial 

time in n while being independent of V*. To do so, we rely on the adopted PPT that serves 
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as a subroutine for the approximation algorithm. The idea consists in downscaling the 

profits to polynomial size as required by the error parameter ε, as given in the pseudo-code 

below. It is proven that the time complexity of the FPTAS is O ( 
n 3

ε
 ). 

Function approximation-knapsack (ε: real): subset of set X 

Begin 

k ← ε × Vmax / n; 

Redefine function value so that value (xi = 1 .. n) becomes ⌊value (xi = 1 .. n) / k⌋;  

Use dynamic programming to get solution S' for the new instance of the problem; 

Return S'; 

End 

4. Advantages and drawbacks of approximation algorithms 

Approximation algorithms have some advantages, including: 

 Problem analysis: the design of approximation algorithms requires analyzing 

problems which makes it possible: to highlight the variations in difficulty between 

them, to distinguish the easy cases of problems from those difficult and to help 

design effective and practical heuristics. 

 Time complexity: approximation algorithms run in polynomial time, which 

significantly reduces the time complexity compared to the corresponding exact 

algorithms that generally run in exponential time. 

 Guarantee: although approximation algorithms do not allow necessarily finding 

the optimal solutions, the approximation factor λ is nevertheless a proven guarantee 

since the solution is at most λ times worse than the optimal solution. 

Approximation algorithms also have some drawbacks; we cite as examples: 

 Difficulty of approximation: the determination of a good approximation is often 

carried out by making several proofs, which requires a strong mathematical 

background and formal demonstrations. 

 Complexity estimation: unlike other algorithmic paradigms (e.g. integer 

programming), there is often no incremental/continuous tradeoff between running 

time and solution quality. 

 Approximation quality: for some problems, the approximation factor still 

remains large while for others, it is impossible to admit an approximation scheme. 
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Exercises set 1 (Greedy algorithms) 

 

Exercise 1: shortest superstring problem 

Let S = {s1, s2, …, sn} be a set of n strings such that no element si is a substring of another 

sj. It is asked to devise a greedy algorithm that attempts to find the shortest superstring 

containing each element si ∈ S as a substring. 

Example 

Let consider S = {"TCADOG", "GTAAGT", "DOGTA", "TTCA", "AGTCTTC"}. 

Thus, str1 = "TCADOGTAAGTCTTCA" and str2 = "TTCADOGTAGTAAGTCTTC" 

are two potential solutions. However, str1 is better as it is shorter than str2. 

Exercise 2: job-sequencing problem with deadlines 

Let consider a uniprocessor machine and a set of n tasks X = {t1, t2, …, tn} with deadlines 

d1, d2, …, dn. Each task ti takes one unit and it cannot run beyond its deadline (i.e. it must 

end before deadline di). When a given task ends before its deadline, it earns a profit pi. The 

objective is to try to find a task scheduling that maximizes the sum of profits. 

Example 

Let consider a system composed of 10 tasks, as follows: 

Tasks (ti) t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Deadlines (di) 9 2 5 7 4 2 5 7 4 3 

Profits (pi) 15 2 18 1 25 20 8 10 12 5 

A possible jobs schedule is as follows: t7, t6, t9, t5, t3, t4, t8, t1; the total profit earned is 109. 

Exercise 3: activity selection problem 

Let A = {a1, a2, …, an} be a set of n activities such that each activity is characterized by 

its starting and finishing time. The objective is to try to find the maximum number of 

activities performed by a single person assuming that a person can only work on a single 

activity at a time. 

Example 

Let consider a set of 11 activities such that the following pairs give their starting and 

finishing time: a1 (1, 4), a2 (3, 5), a3 (0, 6), a4 (5, 7), a5 (3, 8), a6 (5, 9), a7 (6, 10), a8 (8, 11), 

a9 (8, 12), a10 (2, 13), a11 (12, 14). 

A potential solution is to select: a1 (1, 4), a4 (5, 7), a8 (8, 11), a11 (12, 14). 
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Exercise 4: bookshelves problem 

A library is planning to redo its bookshelves. It includes a collection of books bi = 1..n. Each 

book bi has a width wi and a height hi. The books should be stored on shelves of length L. 

Let assume that the books should be arranged in an unspecified order by considering only 

their heights and widths. The objective is to write two greedy algorithms that return the 

number of required bookshelves for the arrangement of books in order to: 

1. minimize the number of shelves necessary while caring only about books widths. 

2. minimize the books clutter which is defined as the sum of the heights of the largest 

book in each shelf used (without worrying about books widths). 

Example 

Let consider a set of 8 books to be arranged in bookshelves of length L = 10. The following 

pairs give their heights and widths, respectively: b1 (25, 3), b2 (26, 2), b3 (27, 3), b4 (30, 2), 

b5 (30, 1), b6 (25, 4), b7 (29, 3), b8 (24, 1). The order of books that minimizes the number 

of required bookshelves would be: b6, b1, b3, b7, b2, b4, b5, b8 (2 bookshelves) while the 

order that minimizes the books clutter would be: b4, b5, b7, b3, b8, b2, b1, b6 (2 bookshelves 

and a books clutter of 56). 

Exercise 5: train platforms problem 

Consider a station for which the arrival and departure of trains are scheduled. Thus, it is 

asked to write a greedy algorithm that attempts to determine the minimum number of 

platforms so that there will be no delays in trains' arrivals. 

Example: let consider trains arrival = {2:00, 2:10, 3:00, 3:20, 3:50} and departure = {2:30, 

3:40, 3:20, 4:30, 4:00}. The minimum number of platforms needed is 2 (see the table below) 

Event Time Platform id 

Arrival 2:00 1 

Arrival 2:10 2 

Departure 2:30 1 

Arrival 3:00 1 

Departure 3:20 1 

Arrival 3:20 1 

Departure 3:40 2 

Arrival 3:50 2 

Departure 4:00 2 

Departure 4:30 1 
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Exercises set 2 (Divide-and-conquer) 

 

Exercise 1: minimum-maximum in an array 

Let consider an array A of n integers. Using the divide-and-conquer paradigm, write: 

1. an algorithm to find the index of the largest element in A. Calculate its time complexity. 

2. an algorithm that performs the simultaneous search for the smallest and largest elements 

in array A (it returns their indices). Calculate its time complexity. 

Exercise 2: modified binary search in a sorted array 

Let T [1..n] be an array of distinct integers sorted in ascending order, some of which may 

be negative. Using the divide-and-conquer paradigm, write an algorithm that returns an 

index i such that T [i] = i, assuming that such an index exists. Calculate its time complexity. 

Exercise 3: median in two sorted arrays 

Let A [1..n] and B [1..n] be two arrays sorted in ascending order. We seek to find the median 

element of these two arrays (element which has as many strict greater elements as lower or 

equal elements), using the divide-and-conquer paradigm. Calculate its time complexity. 

Exercise 4: inversions in an array 

Consider an array of n positive integers A = [a1, a2, …, an]. We say that pair (i, j) is an 

inversion of A if (i < j) and (ai > aj). For example, array A = [2, 6, 3, 1, 5] has 5 inversions: 

(1, 4), (2, 3), (2, 4), (2, 5) and (3, 4). 

1. Write a naive algorithm to determine the number of inversions of array A. Calculate its 

time complexity. 

2. By relying on the divide-and-conquer paradigm, write an algorithm to determine the 

number of inversions of array A. Calculate its time complexity. 

Exercise 5: integer power 

I) Let A and n be two integers such that n ≥0. We want to calculate the value of power An. 

1. Write a simple recursive function to calculate An. Calculate its time complexity. 

2. We define the value of power An as follows: 

 

An =  { 
  

1 if n = 0 

An = An/2 × An/2                when n is even (n = 2×k) 

A2k+1 = A × An/2 × An/2     when n is odd (n = 2×k + 1) 
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Use the divide-and-conquer paradigm to write a recursive function that performs the 

requested calculation. Calculate its time complexity. 

3. Now, the value of power An is defined as follows: 

 

An =  { 
  

1 if n = 0 

A2k = (𝐴2)𝑘               when n is even (n = 2×k) 

A2k+1 = A×(𝐴2)𝑘       when n is odd (n = 2×k + 1) 

Use the divide-and-conquer paradigm to write a recursive function that performs the 

requested calculation. Calculate its time complexity. 

II) Let F be a function that depends on an integer n ≥ 0 and an integer constant v0 > 0, 

defined as follows: 

 

1. Give the result of execution of function F for: 

n = 3 and v0 = 2 

 n = 3 and v0 = 3 

2. What does function F calculate? A demonstration is requested. 

3. Determine the number of multiplications m (n) performed by function F(n). 

4. Calculate the time complexity of function F(n). 

5. Show how it would be possible to improve the time complexity. Give the time 

complexity of the proposed solution.  

Function F (n : integer) : integer 

Begin 

 If (n = 0) then 

  Return (v0) ; 

 Else 

  Return F (n - 1) × F (n - 1) × …. × F (n - 1) ; 

 

 

 End if 

End 

v0 times 
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Exercises set 3 (Dynamic programming) 

 

Remark. 

For all the exercises in this set, the aim is to solve problems using dynamic programming. 

Thus, it is asked to give: 

1. The recursive formula leading to efficient problem solving. 

2. The structure of the array of results as well as the initial values of its cells. 

3. The pseudo-code to fill in the array of results. 

Exercise 1: Fibonacci sequence 

The Fibonacci sequence is defined by the following recursive formula: 

 

Fn =  { 
  

F0 = 1 

F1 = 1 

Fn-1 + Fn-2       when n > 1 

The aim is to calculate the nth term of the Fibonacci sequence. 

Exercise 2: maze problem 

A maze is modeled by a matrix t of size n × p containing only 0s and 1s, as shown in the 

figure below. The 0s represent empty spaces while the 1s represent inaccessible cells. 

Moves can be down, right and across the diagonal. The objective is to find the shortest 

path to get out. 

 

Exercise 3: edit distance calculation (Levenshtein distance)  

The edit distance aims to measure the similarity between two strings. A classic use-case of 

edit distance is when a search engine returns the same result for two entered keywords (e.g. 

"dynamic" and "dymanic"). Three elementary operations on words are considered: 
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– substitution: one letter is replaced by another, 

– insertion: a new letter is added, 

– deletion: a letter is deleted. 

The edit distance between two words U and V is then the minimal number of operations 

to transform U into V. For instance, on the word decay, if we substitute y for d and insert 

e after d, we get the word decade. We can demonstrate that this number of operations is 

minimal and that the distance from decay to decade is therefore 2: one substitution and 

one insertion. Thus, it is asked to provide a solution to this problem. 

Exercise 4: largest independent set in a graph  

Let G = (V, E) be a directed graph where V = {v1, v2, …, vn} is a set of n vertices (nodes) 

and E is the set of edges between the vertices such that each edge has a non-negative 

length. A subset X ⊆ V is said to be independent if, for any pair of vertices x, y ∈ X, (x, y) 

∉ E (i.e. no pair of vertices in X share an edge). Therefore, we are interested in finding an 

independent set of maximum size using dynamic programming. 

Exercise 5: longest palindromic subsequence 

Let S = c1c2 … cn be a sequence of n characters. It is asked to find the length of the longest 

palindromic subsequence in sequence S. 

Example 

Let S1 = WEEKSFORWEEKS and S2 = MMAMCMCAM be two characters sequences. 

The longest palindromic subsequence of S1 is 5. There are more than palindromic 

subsequences of length 5 (e.g. EEWEE, EEREE, etc.).  

Regarding sequence S2, the longest palindromic subsequence is 7 corresponding to 

MAMCMAM. Subsequences MMMMM and MMCMM in sequence S2 are also 

palindromic but not the longest ones. 
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Exercises set 4 (Backtracking) 

 

Remark. 

For all the exercises in this set, the aim is to solve CSPs using backtracking algorithms 

according to the basic scheme. Thus, it is asked to give: 

1. The problem formulation by specifying the decision variables, their domains of 

definition and the constraints imposed on them. 

2. The pseudo-code describing the steps of the backtracking algorithm. 

Exercise 1: all possible strings made by placing spaces 

Let S be a string for which it is asked to generate all possible strings made by placing zero 

or one space between its characters.  

Example 

Consider S = "xyz", the set of all possible strings is: {"xyz", "xy z", "x yz", "x y z"}. 

Exercise 2: tug of war 

Let S be a set of n integers. We seek to divide set S into two subsets of size n/2 each so 

that the absolute value of the difference of the elements sum of each subset is as minimum 

as possible. Note that in the case where n is odd, one subset is of size (n - 1)/2 while the 

other subset is of size (n + 1)/2. 

Example 

Consider S = {3, 4, 5, -3, 100, 1, 89, 54, 23, 20} where n = 10. Note that subsets S1 = {4, 

100, 1, 23, 20} and S2 = {3, 5, -3, 89, 54} represent an optimal solution as they are both of 

size 5 and the sum of their elements is the same (148 in both cases). 

Exercise 3: Maximum number possible using at most K swaps 

Let M and K two positive integers. We seek to find the maximum integer possible by using 

at most K swap operations on its digits. 

Example 

– For M = 6945 and K = 1, the output is 9645 (swap 9 with 6). 

– For M = 5488 and K = 2, the output is 8854 (swap 8 with 4 so number becomes 

5884, then swap 5 with 8 so number becomes 8854). 

– For M = 96541 and K = 1, the output is 96541 (no swap is required). 
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Exercise 4: knight tour problem 

Let consider a knight that is placed on the first block of an empty board. The knight moves 

according to chess rules so that it must visit each square exactly once. Thus, we seek to 

find all solutions such that for each solution, we keep track of all movements through 

which the knight goes. 

Example 

The table below shows a typical path that a knight follows to cover all cells of a chessboard 

of 8 × 8. Numbers in the cells indicate the order by which they were visited by the knight. 

 

Exercise 5: Sudoku 

Let consider a 2D array of size 9×9 which is partially filled. The goal is to assign digits 

(from 1 to 9) to the empty cells so that each row, column, and sub-grid of size 3×3 contains 

exactly one instance of the digits from 1 to 9. 

Example 

  

Initial state Final state (correct solution) 
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Exercises set 5 (Probabilistic methods) 

 

Exercise 1: fair and biased random values 

I) Let foo() be an algorithmic function that represents a biased coin such that when called, 

it returns 0 or 1 with 60% and 40% probabilities, respectively. Based only on function 

foo(),write a new function new-foo-50() that returns 0 or 1 with 50% probability each. 

II) Now, let assume that foo() represents a fair coin (i.e. when called, it returns 0 or 1 with 

equal probability of 50% each). Based only on function foo(), write a new function new-

foo-25-75() that returns 0 or 1 with 25% and 75% probabilities, respectively. 

Exercise 2: numerical integration 

Let f: [0, 1] → [0, 1] be a continuous function. Therefore, we want to estimate the value of 

∫ f(x) dx
1

0
 which is actually a measure of the area under the curve y = f (x), as shown in 

the figure below. Write a pseudo-code of a randomized algorithm that returns the 

estimated value of this numerical integration. 

 

Exercise 3: randomness on array elements and indices 

I) Let A = [a1, a2, …, an] be an array of n elements. It is asked to write a pseudo-code of 

an algorithm that generates a random permutation of the elements of array A (i.e. 

randomize array A). This problem is also known as "shuffle a deck of cards". In this 

context, the term "shuffle" implies that each permutation of the elements of array A 

should be equally likely. 

Example 

Let consider A = [1, 2, 3, 4, 5, 6, 7, 8]. One possible output would be: [8, 7, 4, 6, 3, 1, 2, 5]. 

II) Let A = [a1, a2, …, an] be an array of n elements. It is asked to write a pseudo-code of 

a randomized algorithm that finds the most occurring element of array A and returns any 

one of its indices randomly with equal probability. 
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Example 

Let A = [-1, 4, 9, 7, 7, 2, 7, 3, 0, 9, 6, 5, 7, 8, 9]. Element with maximum frequency is: at 

index 7, OR at Index 4, OR at index 5, OR at index 13. All these outputs have equal 

probability. 

Exercise 4: search in a compact sorted list 

A compact list is a list whose elements are compressed into an array. For this purpose, we 

use two arrays V [1..n] to store the elements of the list and P [1..n] to keep track of the 

chaining pointers between the elements of the list in addition to an integer variable t to 

locate the head of the list. The keys of the list elements are sorted in ascending order 

without necessarily being sorted in array V, i.e. V [t] < V [P [t]] < V [P [P [t]]] < … etc., 

but not necessarily V [1] < V [2] < V [3] < … etc. 

Write a randomized function position (x, CL) which returns the position of an element x 

in a compact sorted list CL in array V. Note that binary search cannot be applied since the 

middle of the list cannot be located. 

Example 

The table below represents the compact sorted list CL whose elements are: (1, 2, 3, 5, 8, 

13, 21) with t = 4 (the head of the list). Position (13, CL) = 3, Position (2, CL) = 1. 

i 1 2 3 4 5 6 7 

V [i] 2 3 13 1 5 21 8 

P [i] 2 5 6 1 7 0 3 

Exercise 5: calculation of the median value in an array 

Let A = [a1, a2, …, an] be an array of n elements. Write a pseudo-code of a randomized 

algorithm that calculates the median value in array A (i.e. element at position n/2 if array 

A is sorted), using the Monte Carlo method. 

Example 

Let consider A = [12, 3, 8, 13, 5, 18, 9, 11, 1, 12, 6, 17, 11]. The median value is 11; its 

position is 11 if array A is sorted. 
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Exercises set 6 (Approximation algorithms) 

 

Remark. 

For all the exercises in this set, we deal with NP optimization problems. Therefore, we 

want to write approximation algorithms guaranteeing good approximation factors. 

Exercise 1: set-covering problem 

Let A = {e1, e2, …, en} be a set of n elements and  S = {s1, s2, …, sm} be a collection of 

m subsets of A such that each subset si has a given cost ci. The objective is to find a sub-

collection of S with a minimum cost while covering all elements of A. 

Example 

Let A = {1, 2, 3, 4, 5} and S = {s1, s2, s3} such that: s1 = {1, 3, 4} with cost c1 = 5, s2 = 

{2, 5} with cost c2 = 10 and s3 = {1, 2, 3, 4} with cost c3 = 3. There are two possible sub-

collections covering the elements of A: {s1, s2} with total cost 15 and {s2, s3} with total 

cost 13. Thus, sub-collection {s2, s3} has a minimum cost 13. 

Exercise 2: k-centers problem 

Let G = (V, E) be a complete undirected graph where V = {v1, v2, …, vn} is a set of n 

vertices (nodes) and E is the set of edges between the vertices such that each edge has a 

non-negative length (distance between associated vertices). The objective is to select a 

subset X ⊆ V of k vertices to place warehouses in such a way that the maximum distance 

of a vertex to a warehouse is minimized. 

Example 

Consider V = {0, 1, 2, 3}; the edges and distances between vertices are given in the figure 

below. Thus, it is asked to place 2 warehouses among these 4 vertices so that the maximum 

distance of a vertex to a warehouse is minimized. The two warehouses should be placed in 

vertices 2 and 3. In this case, the maximum distance of a vertex from a warehouse is 6. 

 

Exercise 3: minimum Steiner tree of a graph 

Let G = (V, E) be a connected, weighted and undirected graph, and R ⊆ V be a subset of 

required vertices (terminals). 
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The goal is find a minimum Steiner tree of graph G which is a tree of minimum weight 

while containing all vertices of set R (it may or may not contain the remaining vertices). 

Example 

Let consider the graph given in the figure below where R = {2, 3, 4} is a subset of required 

vertices. The minimum Steiner tree includes the edges set E' = {(1, 2), (1, 3), (1, 4)}. 

 

Exercise 4: maximum subset sum 

Let S = {v1, v2, .., vn} be a set of n positive integers. The goal is to find a subset of set S 

whose elements sum is as large as possible without exceeding a given integer d (the optimal 

solution is the sum which approaches d as much as possible). 

Example 

Let S = {2, 3, 5, 7} and d = 11. 

One possible solution is subset S1 = {2, 7} with elements sum equal to 9. There are two 

optimal solutions with elements sum equal to 10: Sopt1 = {3, 7} and Sopt2 = {2, 3, 5}. 

Exercise 5: load balancing 

Let M = {m1, m2, .., mk} and T = {j1, j2, .., jn} be a set of k machines and n jobs such that 

the processing time of each job ji is ti. The goal is to assign each job to a machine such that 

the makespan is minimized. The makespan is defined as the largest total processing time 

of a machine. 

Example 

Let consider a set M = {m1, m2, m3} composed of three machines. The table below gives 

the considered jobs and their processing times. 

Jobs (ji) j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 

Processing times (ti) 3 4 2 3 1 6 4 4 3 2 1 5 

The optimal solution consists in assigning jobs (j1, j2, j3, j4, j5) to m1, jobs (j6, j7, j9) to m2 

and jobs (j8, j10, j11, j12) to m3 with a makespan of 13. 
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