جامعة العربي بن مميدي أو البواتي الامتحان في مادة تحليل2

كلية العلوم الدقيقة وعلوم الطبيعة والحياة قسم الرباضيات والإعلام الآلي السنة الأولى إعلام آلى S2

التمرين الاول: (10 نقاط)

.1 ليكن التابع
$$g$$
 المعر ف ب e^x المثل له. المثل له. $g(x) = \ln(1 + \tan x) e^x$ للمنحى البياني الممثل له.

أ. اوجد نشرًا محدودًا من المرتبة
$$3$$
 بجوار 0 للتابع $1+\tan x$ نشرًا محدودًا للتابع $1+\tan x$ من المرتبة $1+\tan x$ بجوار $1+\tan x$ من المرتبة $1+\tan x$

$$(T)$$
 و (C_g) و النقطة ذات الفاصلة 0 ، وَحدد الوضع النسبي لا (C_g) و النقطة ذات الفاصلة 0 ، ماذا تستنتج (T_g) و النقطة ذات الفاصلة (T_g) و النقطة (T_g) و النقطة ذات الفاصلة (T_g) و النقطة ذات الفاصلة والنقطة ذات الفاصلة والنقطة ($T_g)$ و النقطة ذات الفاصلة والنقطة ($T_g)$ و النقطة ذات الفاصلة والنقطة ($T_g)$ و النقطة ($T_g)$ و الن

.2 ليكن التابع
$$f$$
 المنحى البياني الممثل له. \mathbb{R}^* بالمعرف على \mathbb{R}^* بالمعرف على \mathbb{R}^* بالمثل له.

أ. أوجد نشرًا محدودًا من المرتبة
$$3$$
 بجوار $\infty+$ للتابع h المعرف ب $x\mapsto\sin\frac{1}{x}$ ، ثم استنتج نشرًا محدودًا بجوار $\infty+$ للتابع f .

$$(C_f)$$
 بين أن (C_f) يقبل مستقيماً مقارباً مائلاً (Δ) يطلب تعيين معادلة له، محددا الواضع النسبي لا (Δ) و (Δ) في جوار (Δ) .

3. باستعمال صيغة لاغرانج أثبت أن:

$$\forall x \in [0;\pi] \quad : 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} \leq \cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

$$\therefore x \ni 0$$
 تعطی صیغهٔ لاغرانج:
$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(x)}{k!} x^k + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

$$\sin (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3), \quad e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

$$\therefore \sin x = x - \frac{x^3}{3!} + o(x^3), \quad \tan x = x + \frac{x^3}{3} + o(x^3)$$

التمرين الثاني: (06 نقاط)

أحسب التكاملات التالية:

$$I_1=\int x^2\arctan x\,dx$$
 $I_2=\int rac{1-2\cos x\sin x}{1+\cos^2 x}\,dx$ $I_3=\int rac{x}{x^2-3x+2}\,dx$

التمرين الثالث: (04 نقاط)

1. حل المعادلة التفاضلية التالية:

(استعمل
$$I_3$$
 من الثمرين الثاني) $(x^2 - 3x + 2)\circ + xy = -1$

2. استنتج حلا عاما لمعادلة برنولى:

$$(x^2 - 3x + 2)\acute{y} - xy = y^2$$