جامعة العربي بن مهيدي—أم البواقي— كلية العلوم الاقتصادية العلوم التجارية وعلوم التسيير

قسم العلوم التجارية

السنة الثانية ليسانس

الإجابة النموذجية لامتحان السداسي الرابع في مقياس أساسيات بحوث العمليات

التمرين الأول (4نقطة): كل إجابة صحيحة 1نقطة

2. مشكلة البرمجة الخطية هي تقنية لإيجاد	1. يمكن الحصول على القيمة المثلى لا Z بيانيا من:
أ القيمة التقريبية.	أ النقاط الركنية لمنطقة الممكنة.
ب القيمة المثلى.	ب جميع نقاط منطقة الحلول الممكنة.
ج القيمة الأولية.	ج جميع ما سبق.
د لا شيء مما سبق.	د لا شيء مما سبق.
4. في مشكلة البرمجة الخطية، تسمى الدوال التي سيتم تعظيمها أو	3 في الطريقة البيانية، يكون عدد القيود
تصغيرها	أ قيدين (02) فقط
أ قيود	ب لا يزيد عن 3 قيود
ب الحل الأساسي	ج أي عدد
ج دالة الهدف	د لا شيء مما سبق
د حل ممکن	

التمرين الثاني (04 نقاط): يجب أن يكون كل التحويل صحيح (إشارة القيود، إشارة المتغيرات، منقول المصفوفة، دالة الهدف))

.2 نقاط)	1. (02 نقاط)
$Min: Z=10y_1+6y_2+16y_3$ $2y_1+2y_2+y_3=10$ $4y_1+5y_2+2y_3\geq 12$ $y_1\geq 0$, $y_2\leq 0$ غير محدد الإشارة، $y_1\leq 0$	$\begin{array}{c} \text{Min}: Z=150y_1+440y_2+480y_3+90y_4\\ y_1+4y_2+y_3+y_4\geq 100\\ y_1+2y_2+4y_3 & \geq 200\\ y_1,y_2,y_3,y_3\geq 0 \end{array}$

التمرين الثالث: (5 نقاط):

لنفترض أن C_2 يتغير ضمن المجال من δ إلى Δ Δ + δ وبإجراء عملية تعويض في حدول السمبلكس الأخير فإننا نتحصل على الجدول

التالي: (يجب أن يكون الجدول صحيح دون أية أخطاء 2 ن)

C_{j}		5	6+ Δ	0	0	B_{i}
C_b	X_{j}	X_1	X_2	S_1	S_2	قيم الحل
6+ Δ	X_2	0	1	5/7	-2/7	30/7
5	X_1	1	0	-4/7	3/7	60/7
$Z = \sum_{j=1}^{n} C_j X_j$		5	6+ Δ	10/7+5/7 Δ	3/7-2/7 △	Z=480/7+30/7\Delta
C_j - Z_j		0	0	-10/7-5/7 Δ	-3/7+2/7 Δ	

الحل المعطى بالجدول يبقى حلا أمثلا إذا: (إيجاد المجال الصحيح ل Δ 1 ن)

جامعة العربي بن مهيدي-أم البواقي-كلية العلوم الاقتصادية العلوم التجارية وعلوم التسيير

$$\begin{bmatrix}
-10/7-5/7 \ \Delta \leq \mathbf{0} \\
-3/7 + 2/7 \ \Delta \leq \mathbf{0}
\end{bmatrix} \qquad \qquad \Delta \geq -2$$

$$\Delta \leq 3/2$$

$$\Delta \leq 3/2$$

هذا يعني أن الحل الأمثل سيأخذ القيمة (30/7، 30/7) =(X1, X2) كلما كان:

4 \(C_2 \le 7.5 \)

إذا كانت التغيرات التي قد تصيب المعلمة C_2 داخل نطاق المجال (المدى) الذي تم تحديده [7.5,4] باستخدام الحساسية، فلن يكون هناك أي أثر على الحل الأمثل أما إذا كانت التغيرات خارج المجال المحدد، فهناك حاجة إلى حل جديد ولا بد من إعادة البرمجة للمشكلة المطروحة. (التعليق الصحيح 1 ن)

التمرين الرابع (7 نقطة): (1.5 ن)

1. كتابة النموذج وفقا للصيغة القياسية:

Min: $Z=3X_1+10X_2+0S_1+0S_2+Ma_1+Ma_2$ $5X_1+6X_2-1S_1+0S_2+1a_1+0a_2=10$ $2X_1+7X_2+0S_1-1S_2+0a_1+1a_2=14$ $X_1\geq 0,\ X_2\geq 0,\ S_1\geq 0,\ S_2\geq 0,\ a_1\geq 0,\ a_2\geq 0$

2. إيجاد الحل الأمثل الذي يحقق للمؤسسة أدنى تكلفة، باستخدام طريقة السمبلكس.

	C _b		3	10	0	0	M	M	$\mathbf{B_{i}}$	$\mathbf{B_{i}/a_{ij}}$	
			X_1	X_2	S_1	S_2	\mathbf{a}_1	$\mathbf{a_2}$			
	M	a_1	5	6	-1	0	1	0	10	10/6= 5/3	R
عنصر الدوران	M	\mathbf{a}_2	2	7	0	-1	0	1	14	14/7=2	- - -
	$Z_j = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$	$\sum_{j=1}^{n} C_j X_j$	7M	13M	-M	-M	M	M		Z=24M	
	C	:- Z i	3-7M	10-13M	М	M	0	0			

عمود الدوران

سطر الدوران

إتمام جدول السمبلكس الأول والتعليق عليه 1.5 نقطة

-متغيرات داخل الأساس:a₁=10, a₂=14

 $X_1 = X_2 = S_1 = S_2 = 0$ -متغيرات خارج الأساس-

بالرجوع إلى قيم السطر الأحير نلاحظ أن هناك قيمتين سالبتين وهذا يعني أنه لم يتم بلوغ الحل الأمثل بعد.

 a_1 : هو: \mathbf{X}_2 ، المتغير الخارج هو: المتغير الداخل

جامعة العربي بن مهيدي-أم البواقي-كلية العلوم الاقتصادية العلوم التجارية وعلوم التسيير

2. تشكيل جدول الحل الأساسي الثاني صحيح دون أية أخطاء 1 نقطة

Сь		3	10	0	0	M	M	$\mathbf{B_{i}}$	B _i /a _{ij}	
		\mathbf{X}_{1}	\mathbf{X}_2	S_1	S_2	\mathbf{a}_1	\mathbf{a}_2			
10	\mathbf{X}_2	5/6	1	-1/6	0	1/6	0	5/3	/	
M	\mathbf{a}_2	-23/6	0	→ 7/6	-1	-7/6	1	7/3	2	
$Z_j = \sum_{j=1}^n$	C_jX_j	25/3-23/6M	10/	-5/3+7/6 M	-M	5/3-7/6M	M	Z=50/3+7/3M]\
C_{j} - Z_{j}	j	-16/3+23/6M	Ó	5/3-7/6M	M	-	0			
			/			5/3+13/6				
			/			M				
	1	$\overline{}$	Г						الدوران	سطر
		عنصر الدوران	L	عمود الدوران					0 33	,

التعليق: (1 ن)

 $X_2=5/3, a_2=7/3$: — are all like the constants of the constant of the constant

 $X_1 = a_1 = S_1 = S_2 = 0$: ستغيرات خارج الأساس

بالرجوع إلى قيم السطر الأخير نلاحظ أن هناك قيمة سالبة وهذا يعني أنه لم يتم بلوغ الحل الأمثل بعد.

المتغير الداخل هو: :S1 ، المتغير الخارج هو:

3. تشكيل جدول الحل الأساسي الثالث صحيح دون أية أخطاء 1 نقطة

C _b		3	10	0	0	M	M	Bi
		$\mathbf{X_1}$	\mathbf{X}_2	S_1	S_2	\mathbf{a}_1	\mathbf{a}_2	
10	\mathbf{X}_2	2/7	1	0	-1/7	0	1/7	2
0	S_1	-23/7	0	1	-6/7	-1	6/7	2
$Z_{j} = \sum_{j=1}^{n}$	C_jX_j	20/7	10	0	-10/7	0	10/7	Z=20
C _i -Z	, /i	1/7	0	0	10/7	M	M-10/7	

التعليق: (1 ن)

يتضح من قيم السطر الأخير أن بعض القيم موجب وبعضها معدوم وبالتالي قد تم الوصول إلى الحل الأمثل والجدول الأساسي الثالث هو المجدول الأخير. حيث حتى تحقق المؤسسة أدنى تكلفة ممكنة 20 ون في ظل الموارد المتاحة يجب عليها أن تنتج وحدتين (2) من X ولا تنتج أي وحدة من X_1 ، حيث أن قيم المتغيرات:

- X_1, X_2 :ساس داخل الأساس متغيرات
- $a_1,\,a_2$:متغيرات خارج الأساس-
- $a_2 \!\!=\!\! 0,\, a_1 \!\!=\!\! 0,\, S_2 \!\!=\!\! 0,\, X_1 \!\!=\!\! 0$ -متغيرات خارج الأساس