UNIVERSITE D'OUM EL BOUAGHI

Institut des Sciences et des Techniques Appliquées – ISTA – Module : Méthodes Analytiques Chimie Biochimie et Sécurité (L1 VQPA)

TD03 : Le dosage

Exercice 01:

L'ion dichromate Cr2O72- oxyde l'éthanol (CH3CH2OH) en éthanal (CH3COH) pour être réduit en ion chrome Cr3+ en milieu acide. On effectue le dosage en milieu acide de 10 mL d'une solution alcoolique par une solution de dichromate de potassium de concentration 0,015 mol.L-1. A l'équivalence, on a versé 11,2 mL de solution de dichromate de potassium.

- 1) Ecrire la réaction de dosage.
- 2) Comment repérer l'équivalence en sachant que l'ion dichromate est orangé, tandis que l'ion chrome est vert ? Les autres ions sont incolores.
- 3) Calculer la concentration de la solution alcoolique.

Exercice 03:

Détermination de la concentration d'une protéine par la méthode de Bradford

A partir des valeurs suivantes, tracer la droite étalon, en annotant les axes : $A_{595} = f$ (quantité de BSA)

albumine (µg)	0	2	4	6	8	10	12
A ₅₉₅	0	0,25	0,38	0,69	0,84	1,08	1,12

- 1. Pourquoi pour 12 µg a-t-on $A_{595} = 1,12$?
- 2. Pourquoi ne faut-il pas tenir compte de ce point pour tracer la droite étalon ?

A partir des valeurs suivantes, calculez la concentration (en µg/ml) d'une solution de protéines à doser.

Volume prélevé de solution à doser	10	60	150
(µL)			
Dilution préalable de la solution à	Non diluée	3	8
doser			
A_{595}	0,51	0,98	0,94

Exercice 3:

L'absorbance par un soluté est fonction de la concentration C du soluté comme le montre la loi de Beer - Lambert : $A = log \ (I_0/I) = \epsilon$. L . C

- A = absorbance (ou densité optique) sans unité
- I_0 = intensité lumineuse incidente (avant interaction avec le soluté)
- I = intensité lumineuse transmise
- L = longueur du trajet otique (en cm)
- ε = coefficient d'extinction (qui dépend de la longueur d'onde) :
 - 1. Si la concentration du soluté est en M (ou mol.L-1), ϵ est en M-1.cm-1 et on l'appelle coefficient d'extinction molaire ϵ_M
 - 2. Si la concentration du soluté est en % (masse/volume), ε est en g⁻¹.L.cm⁻¹ et on l'appelle coefficient d'extinction pondéral ε_{1%}

Une solution d'un composé X à 2 % transmet 75 % de la lumière incidente à une longueur d'onde donnée. Calculez l'absorbance de cette solution et ε_M du composé X.

Données : L = 1 cm - Masse molaire de $X = 250 \text{ g.mol}^{-1}$