Université LARBI Ben M'hidi - Oum EL BOUAGHI

Institut: Gestion Des Techniques Urbains.

Filiére: Gestion Des Techniques Urbains.

Niveau : 1ére année.

Module: Chimie.

Année universitaire: 2023/2024

Responsable du module : MOHAMMED CHERIF OUIZA

Correction de l'examen de chimie

Exercice 1 (8 Points)

Soit les éléments suivante (z=21);(z=24);(z=26).

L a structure électronique a l'état fondamental

1. Se
$$(z=21)$$

Cortege

$$1S^{2} 2S^{2} 2P^{6} 3S^{2} 3P^{6} 4S^{2} 3d^{1}$$

 $1S^{2} 2S^{2} 2P^{6} 3S^{2} 3P^{6} 3d^{1} 4S^{2}$ (0,5)

L a configurtion électronique :(gaz rare) (couche de valence);

^{2.} :(Ar) (3d¹ 4S²);Ar: 18
$$\acute{e}$$
: (0,5)

$$Cr(z=24)$$

Cortege

$$1S^{2} 2S^{2} 2P^{6} 3S^{2} 3P^{6} 4S^{2} 3d^{4}$$

 $1S^{2} 2S^{2} 2P^{6} 3S^{2} 3P^{6} 3d^{4} 4S^{2}$ (0,5)

L a configuration électronique :(gaz rare) (couche de valence);

:(Ar)
$$(3d^5 4S^1)$$
;Ar: 18 \'e : (0.5)

3. Fe
$$(z=26)$$

Cortege

$$1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^6$$

 $1S^2 2P^6 3S^2 3P^6 3d^6 4S^2 : (0,5)$

L a configuration électronique :(gaz rare) (couche de valence);

:(Ar) $(3d^6 4S^2)$;Ar: $18 \notin :(0,5)$

element	Periode	colonne	groupe	famille
Se ^(0,25)	4(0,25)	3(0,25)	III B ^(0,25)	Meteaux de (0,25)
				transition
Cr ^(0,25)	4(0,25)	6(0,25)	VI B ^(0,25)	Meteaux de (0,25)
				transition
Fe ^(0,25)	4(0,25)	8(0,25)	VIII B ^(0,25)	Meteaux de (0,25)
				transition

L a structure électronique du X1

Period n=4.

Groupe: VII A

 $1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^{10} 4P^5$

 $1S^2 2S^2 2P^6 3S^2 3P^6 3d^{10} 4S^2 4P^{5(0,25)}$

 $x:(Ar) (3d^{10} 4S^2);Ar:18 é.$

 $X1(Z=35 \acute{e})_{(0,5)};$

L e non e la famille ; les halogènes (0,5)

L a structure électronique du X2

L e non e la famille ; les halogènes

Periode n=2.

 $1S^2 2S^2 2P^{5(0,25)}$

 $X1(Z=9 \acute{e});$

(He) $(2S^2 2P^5)(0,5)$;

Exercice 2 (5 Points)

 $^{1.L'EAU}$ dure est une eau chargé en ions calcium et magnésium elle se définit par sa forte teneur en calcaire ; $^{(0,5)}$

^{2.Les} étapes fondamentales d'épuration des eaux potables

Les procédés de traitement physiques

- ❖ Dégrillage et tamisage ;
- Floculation et décantation ;
- ❖ Filtration;

Les procèdés de traitement chimiques

- Ozonotion;
- **❖** La ésurfection ;

Les procèdés de traitement physicochimiques

Coagulation et floculation ;

Les procèdés de traitement biologiques

❖ Filtration sur charbon actif; (2)

3.Les normes d'exigence de qualité d'eau

- Les valeurs guides ;
- Les paramètres organoleptiques ;
- Les paramètres physicochimiques ;
- Les paramètres concernons les substances indésirables ;
- Les paramètres des substances toxiques ;
- ❖ Les paramètres microbiologiques ; (2)

barrage baani haroune est un grand barrage au Algérie et barrage d'orkis est réservoir avec de 90 % d'eau du barrage bani haroune et 10 % des eaux naturelles (0,5).

Exercice 3 (3 Points)

- $n_{C12H22O11} = m/M = 10/222 = 0.045 \text{ mole}^{(1)}$
- $n_{C12} = V_g/V_M = 0.8/22.4 = 0.0357 \text{ mole}^{(1)}$
 - $\rho = m/V \implies m = \rho * V = 1,595 * 0,02 \cdot 10^{-3}$ $n = m/M = 0.04785 10^{-3}/154 = 0,0003 mole.$

Exercice 3 (4 Points)

$$\begin{split} &MnO_4^-_{(aq)} \ / \ Mn^{2+}_{(aq)} \\ &MnO_4^-_{(aq)} + 8H^+ + 5e^- = Mn^{2+}_{(aq)} + 4H_2O_{(I)} \\ &CH_3COOH_{(aq)} \ / \ CH_3CHO_{(aq)} \\ &CH_3COOH_{(aq)} + 2H^+ + 2e^- = CH_3CHO_{(aq)} + H_2O_{(I)} \end{split} \label{eq:mass_eq} \end{split}$$

$$2 \text{ MnO}_{4^-(aq)} + 16 \text{H}^+ + 10 \text{e}^- = 2 \text{Mn}^{2+}_{(aq)} + 8 \text{H}_2 \text{O}_{(I)}$$

$$5 \text{ CH}_3 \text{CHO}_{(aq)} + 5 \text{H}_2 \text{O}_{(I)} = 5 \text{CH}_3 \text{COOH}_{(aq)} + 10 \text{H}^+ + 10 \text{e}^-$$
 (1)

$$2 \text{ MnO}_{4 \text{ (aq)}} + 6 \text{H}^{+} + 5 \text{ CH}_{3} \text{CHO}_{\text{(aq)}} \rightarrow 2 \text{Mn}^{2+}_{\text{(aq)}} + 3 \text{H}_{2} \text{O}_{\text{(I)}} + 5 \text{CH}_{3} \text{COOH}_{\text{(aq)}} \tag{1}$$