Université LARBI BEN M'HIDI (ULBM)

Faculté des Sciences et Sciences Appliquées (FSSA)

Département de Génie Mécanique (DGM)

Option : Master Energétique/Installations énergétique et turbomachines

Année/Semestre: Première année/S2

Cours de Combustion

Partie 1: Thermochimie (Max 6 semaines)

Dr. MAMERI Abdelbaki

Table des matières/Partie 1 (thermochimie)

Chapitre 1 (1.5 semaines)

Rappels de la thermodynamique

- 1.1 Propriétés extensives et intensives
- 1.2 Equation d'état des gaz parfaits
- 1.3 Equations calorifiques d'état
- 1.4 Mélange des gaz parfaits
- 1.5 Chaleurs latentes de vaporisation
- 1.6 Première loi de la thermodynamique pour un système à masse constante
- 1.7 Première loi pour un volume de contrôle constant
- 1.8 Chimie des combustibles

Chapitre 2 (1.5 semaines)

Mélanges de réactifs et produits de combustion

- 2.1 Stœchiométrie
- 2.1 Rapport stœchiométrique, richesse et excédant d'air
- 2.2 Enthalpie et enthalpie de formation absolue (standard)
- 2.3 Enthalpie de combustion (chaleur de réaction)
- 2.4 Pouvoirs calorifiques

Chapitre 3 (1.5 semaines)

Température adiabatique de la flamme

- 3.1 Température adiabatique de la flamme à pression constante
- 3.2 Température adiabatique de la flamme à volume constant

Chapitre 4 (1.5 semaines)

Equilibre chimique

- 4.1 Deuxième loi de la thermodynamique
- 4.2 Fonction de Gibbs ou énergie libre

Chapitre 1

Combustion et thermochimie

I Rappels de la thermodynamique

1.1 Propriétés extensives et intensives

La valeur numérique d'une propriété extensive dépend de la quantité, masse où nombre de moles, d'une substance considérée. Les propriétés extensives sont notées par des majuscules ; par exemple, V [m³] pour le volume, U [J] pour l'énergie interne, H[J](=U+PV) pour l'enthalpie, etc.

D'autre part une propriété intensive (spécifique) est exprimée par unité de masse où de moles, sa valeur numérique est indépendante da la quantité ou de la substance. Les propriétés intensives sont notées par des minuscules ; par exemple, u[J/kg] pour l'énergie spécifique interne, h[J/kg](=u+Pv) pour l'enthalpie spécifique, etc.

Il faut noter que la température et la pression sont des variables intensives, elles sont notées par T et P. Les variables intensives pondérées par des moles sont notées par des barres, par exemple \bar{u} et \bar{h} (J/mole).

Les propriétés extensives sont obtenues par multiplication de celles intensives correspondantes, par unité de masse ou de moles, par la quantité de la masse ou de moles; c.à.d.:

$$V = mv = N\bar{v}$$

$$U = mu = N\bar{u}$$

$$H = mh = N\bar{h}, \text{ etc}$$
(1.1)

1.2 Equation d'état des gaz parfaits

Une équation d'état donne une relation entre la pression P, la température T et le volume V (ou volume spécifique v) pour une substance. Pour un gaz parfait, dans lequel les forces intermoléculaires et le volume des molécules sont négligeable, l'équation d'état s'écrit :

$$PV = NR_uT$$
 (1.2)
 $PV = mRT$
 $Pv = RT$
 $P = \rho RT$

La constante spécifique du gaz R est reliée à la constante universelle des gaz R_u (=8315 [J/(kmolK]) et à la masse moléculaire du gaz M par :

$$R_u = MR \tag{1.3}$$

La masse m = NM et la masse volumique, densité, $\rho = 1/v$.

1.3 Equations calorifiques d'état

Les expressions qui relient l'énergie interne (ou enthalpie) à la pression et la température sont dites équations calorifiques d'état, c.à.d. :

$$u = u(T, v) \tag{1.4}$$

$$h = h(T, P) \tag{1.5}$$

Pour une variation différentielle dans u ou h, on écrit :

$$du = \left(\frac{\partial u}{\partial T}\right)_{v} dT + \left(\frac{\partial u}{\partial v}\right)_{T} dv \tag{1.6}$$

$$dh = \left(\frac{\partial h}{\partial T}\right)_P dT + \left(\frac{\partial h}{\partial P}\right)_T dP \tag{1.7}$$

On introduit les capacités calorifiques à volume et pression constantes :

$$C_v = \left(\frac{\partial u}{\partial T}\right)_v \tag{1.8}$$

$$C_P = \left(\frac{\partial h}{\partial T}\right)_P \tag{1.9}$$

Pour un gaz parfait, l'énergie interne et l'enthalpie ne dépendent que de la température cela se traduit par :

$$du = \left(\frac{\partial u}{\partial T}\right)_{v} dT = C_{v} dT \tag{1.10}$$

$$dh = \left(\frac{\partial h}{\partial T}\right)_P dT = C_P dT \tag{1.11}$$

Si en plus la température est constante T = cste alors dT = 0 ce qui donne du = 0 et dh = 0 c.a.d u et h sont constantes.

On peut calculer l'enthalpie et l'énergie interne pour un gaz parfait si on définit un état de référence 'ref', on intègre les relations (1.10) et (1.11), on obtient :

$$\int_{uref}^{u} du = \int_{Tref}^{T} C_{v} dt \rightarrow u(T) - u_{ref} = \int_{Tref}^{T} C_{v} dt$$
(1.12)

$$\int_{href}^{h} dh = \int_{Tref}^{T} C_P dt \to h(T) - h_{ref} = \int_{Tref}^{T} C_P dt$$
 (1.13)

Pour les gaz parfaits et réels, les capacités calorifiques, chaleurs spécifiques, Cp et Cv sont fonction de la température. C'est une conséquence de l'énergie interne d'un gaz qui est générée par le mouvement de translation, de rotation et vibration de ses molécules. Selon la théorie quantique, le stockage en vibration et translation devient actif lorsque la température augmente.

La figure 1 montre schématiquement ces modes de stockage d'énergie pour une espèce monoatomique où l'énergie interne est constituée par l'énergie cinétique de translation. Par contre, pour une molécule diatomique on a les trois modes, translation, vibration et rotation.

Ces modèles très simples nous permettent de conclure que les chaleurs spécifiques des molécules triatomiques sont plus importantes par rapport à celles des molécules diatomiques et qui sont à leurs tours plus grandes que celles des molécules monoatomiques.

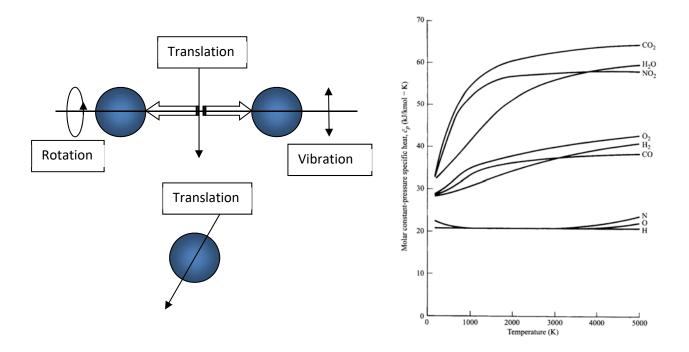


Figure 1 Mouvements des molécules Mono et Di atomiques

Figure 2 Chaleurs spécifiques des espèces

1.4 Mélange des gaz parfaits

Soit un mélange composé de n gaz (espèces), on utilise deux concepts pour caractériser sa composition: **fractions molaires** et **fractions massiques**. Si on a N₁ moles de l'espèce « 1 », N₂ moles de l'espèce « 2 »,etc. La fraction molaire de l'espèce « i » dans le mélange est définie par :

$$\chi_i = \frac{N_i}{N_1 + N_2 + \dots + N_n} = \frac{N_i}{N_{total}} \tag{1.14}$$

Similairement, la fraction massique de l'espèce « i » est définie par :

$$Y_i = \frac{m_i}{m_1 + m_2 + \dots + m_n} = \frac{m_i}{m_{total}}$$
 (1.15)

On peut vérifier facilement que :

$$\sum_{i=1}^{n} x_i = \frac{N_1}{N_1 + N_2 + \dots + N_n} + \frac{N_2}{N_1 + N_2 + \dots + N_n} + \dots + \frac{N_n}{N_1 + N_2 + \dots + N_n} = 1$$

$$\sum_{i=1}^{n} y_i = \frac{m_1}{m_1 + m_2 + \dots + m_n} + \frac{m_2}{m_1 + m_2 + \dots + m_n} + \dots + \frac{m_n}{m_1 + m_2 + \dots + m_n} = 1$$

On peut calculer la masse molaire du mélange gazeux en fonction des fractions molaires par :

$$M_{m\acute{e}l} = \sum_{i=1}^{n} x_i M_i \tag{1.16}$$

Cela donne une relation entre les fractions molaires et massiques :

$$Y_{i} = \frac{m_{i}}{m_{total}} = \frac{M_{i}N_{i}}{\sum_{j=1}^{n} M_{j}N_{j}} = \frac{M_{i}\frac{N_{i}}{N}}{\sum_{j=1}^{n} M_{j}\frac{N_{j}}{N}} = \frac{M_{i}x_{i}}{\sum_{j=1}^{n} M_{j}x_{j}} = x_{i}\frac{M_{i}}{M_{m\acute{e}l}}$$
(1.17)

Ou bien:
$$x_i = Y_i \frac{M_{m\acute{e}l}}{M_i} \tag{1.18}$$

Calculons la masse molaire du mélange en fonction des fractions massiques, on a :

$$M_{m\acute{e}l} = \left[\sum_{i=1}^{n} Y_i \frac{1}{M_i}\right]^{-1} \tag{1.19}$$

Les fractions molaires des espèces sont aussi utilisées pour calculer les pressions partielles des espèces correspondantes. La pression partielle, de l'espèce « i », Pi est la pression qui règne si l'espèce « i » est isolée à la même température dans le même volume du mélange. Pour les gaz parfaits, la pression du mélange est la somme des pressions partielles.

$$P = \sum_{i=1}^{n} P_i \tag{1.20}$$

La pression partielle est reliée à celle du mélange par :

$$P_i = x_i P \tag{1.21}$$

Pour les mélanges des gaz parfaits, les propriétés spécifiques du mélange sont calculées par la pondération en fractions massiques où molaires des propriétés spécifiques individuelles. Par exemple, les enthalpies du mélange sont calculées par :

$$h_{m\acute{e}l} = \sum_{i=1}^{n} Y_i h_i \tag{1.22}$$

$$\bar{h}_{m\acute{e}l} = \sum_{i=1}^{n} x_i \,\bar{h}_i \tag{1.23}$$

Il faut noter que l'enthalpie et l'énergie interne pour un gaz parfait ne dépendent pas de la pression. L'entropie du mélange est aussi calculée par la même façon,

$$S_{m\acute{e}l}(T,P) = \sum_{i=1}^{n} Y_i S_i(T,P_i)$$
 (1.24)

$$\bar{S}_{m\acute{e}l}(T,P) = \sum_{i=1}^{n} x_i \,\bar{S}_i(T,P_i) \tag{1.25}$$

Dans ce cas les entropies des espèces (S_i et \bar{S}_i) dépendent des pressions partielles des espèces. Les entropies peuvent être évaluées pour l'état standard ($P_{ref}=P_0=1$ atm), puisque le mélange des gaz a une seule température T, toutes les espèces ont cette température. L'entropie s'écrit donc :

$$\Delta S_i = Cpln\left(\frac{T}{T}\right) - R_u \ln\left(\frac{P_i}{P_{ref}}\right) \Rightarrow S_i(T, P_i) = S_i(T, P_{ref}) - R_u \ln\left(\frac{P_i}{P_{ref}}\right)$$
(1.26)

$$\Delta \bar{S}_{i} = \bar{C}pln\left(\frac{T}{T}\right) - R_{u}\ln\left(\frac{P_{i}}{P_{ref}}\right) \Rightarrow \bar{S}_{i}(T, P_{i}) = \bar{S}_{i}(T, P_{ref}) - R_{u}ln\left(\frac{P_{i}}{P_{ref}}\right)$$
(1.27)

Les entropies standard des différentes espèces sont données sous forme de tableaux ou de polynômes.

1.5 Chaleurs latentes de vaporisation

Dans plusieurs procédés de combustions, le changement de phase liquide-vapeur est important. On définit la chaleur latente de vaporisation hfg, par la chaleur nécessaire pour vaporiser complètement une unité de masse de liquide à pression constante et à une température donnée.

$$h_{fg}(T,P) = h_{vapeur}(T,P) - h_{liquide}(T,P)$$
(1.28)

Où T et P sont la température et la pression correspondante de saturation. La chaleur latente de vaporisation est aussi connue par enthalpie de vaporisation. Les chaleurs latentes de vaporisation pour différents combustibles à leurs points d'ébullition, à une pression de 1 atm, sont données sous formes de tableaux.

Exemple

1. Soit un mélange gazeux dans une enceinte où la pression est 3 atm, la température 1500K et la composition est donnée par la table.

N°	Espèce	Nombre de moles
1	СО	0.095
2	CO_2	6
3	H_2O	7
4	\overline{N}_2	34
_ 5	NO	0.005

- 1. Calculer la masse molaire du mélange,
- 2. Calculer les fractions molaires des espèces,
- 3. Calculer les fractions massiques des espèces,
- 4. Calculer la pression partielle de chaque espèce,
- 5. Calculer l'enthalpie du mélange.

Solution

1. La masse molaire du mélange est donnée par :

$$M_{m\acute{e}l} = \sum_{i=1}^{n} x_i M_i = \sum_{i=1}^{n} \frac{N_i}{N_{tot}} M_i = \frac{1}{N_{tot}} \sum_{i=1}^{n} N_i M_i$$

$$= \frac{1}{471} (0.095 * 28 + 6 * 44 + 7 * 18 + 34 * 28 + 0.005 * 30) = 28.55 \text{ Kg/Kmole}$$

2. Les fractions molaires des espèces sont données par :

$$x_i = \frac{N_i}{N_1 + N_2 + \dots + N_n} = \frac{N_i}{N_{total}}$$
 \rightarrow $x_{CO} = \frac{0.095}{47.1} = 2.017 \ 10^{-3}, \quad x_{CO_2} = \frac{6}{47.1} = 1.274 \ 10^{-1}$
 $x_{H_2O} = \frac{7}{47.1} = 1.486 \ 10^{-1}, \quad x_{N_2} = \frac{34}{47.1} = 7.219 \ 10^{-1}, \quad x_{NO} = \frac{0.005}{47.1} = 1.062 \ 10^{-4}$

3. Les fractions massiques des espèces sont données par :

$$\begin{split} Y_i &= \frac{m_i}{m_{total}} = x_i \frac{M_i}{M_{m\acute{e}l}} \quad \rightarrow \quad Y_{CO} = 2.017 \ 10^{-3} \ \frac{28}{28.55} = 9.974 \ 10^{-4} \ , \\ Y_{CO_2} &= 1.274 \ 10^{-1} \ \frac{44}{28.55} = 1.963 \ 10^{-1} \ , \quad Y_{H_2O} = 1.486 \ 10^{-1} \ \frac{18}{28.55} = 9.369 \ 10^{-2} \\ Y_{N_2} &= 7.219 \ 10^{-1} \ \frac{28}{28.55} = 7.080 \ 10^{-1} \ , \quad Y_{NO} = 1.062 \ 10^{-4} \ \frac{30}{28.55} = 1.116 \ 10^{-4} \end{split}$$

4. Pour les pressions partielles peuvent être calculées par :

$$\begin{split} P_i &= x_i P \ \to \ P_{CO} = 2.017 \ 10^{-3} * 3 = 6.051 \ 10^{-3} atm, \ P_{CO_2} = 3.822 \ 10^{-1} atm, \\ P_{H_2O} &= 4.458 \ 10^{-1} atm, \ P_{N_2} = 2.166 \ atm, \ P_{NO} = 3.186 \ 10^{-4} atm. \end{split}$$

L'enthalpie du mélange est :

 $ar{h}_{m\acute{e}l} = \sum_{i=1}^n x_i \, ar{h}_i = \sum_{i=1}^n x_i \left(ar{h}_{fi}^0 + \Delta ar{h}_{si} \right)$ avec $ar{h}_{fi}^0$ l'enthalpie de formation de l'espèce i et $\Delta ar{h}_{si}$ l'enthalpie sensible de la même espèce. Ces quantités sont données par les tables .

Ν°	Espèce	Nombre de moles	$\bar{h}_{fi}^{0}(\mathrm{kj/kmol})$	$\Delta \bar{h}_{si}(1500K)$ (kj/kmol)
1	СО	0.095	-110 541	38 847
2	CO_2	6	-393 546	61 681
3	$H_2\bar{O}$	7	-241 845	48 181
4	\bar{N}_2	34	0	38 404
5	NO	0.005	90 297	39 732

$$\bar{h}_{m\acute{e}l} = 2.017 \, 10^{-3} (-110 \, 541 + 38 \, 847) + 1.274 \, 10^{-1} (-393 \, 546 + 61 \, 681)$$

$$+ 1.486 \, 10^{-1} (-241 \, 845 + 48 \, 181) + 7.219 \, 10^{-1} (0 + 38 \, 404)$$

$$+ 1.062 \, 10^{-4} (90 \, 297 + 39 \, 732) = 28411.31 \, Kj/Kmole$$

1.6. Première loi de la thermodynamique pour un système à masse constante (système fermé): La première loi traduit la conservation d'énergie pour un système à masse constante entre deux états « 1 » et « 2 » par :

 Q_{12} et W_{12} sont des fonctions qui dépendent du chemin suivi et sont ajoutées aux limites; $\Delta E_{12} = E_2 - E_1$ est la variation de l'énergie totale du système, qui est la somme de l'énergie interne, cinétique et potentielle, c.à.d. :

$$E = m\left(u + \frac{1}{2}v^2 + gz\right) \tag{1.30}$$

L'équation (1.30) peut être écrite pour des quantités intensives ou spécifiques, cela donne :

$$q_{12} - w_{12} = \Delta e_{12} = e_2 - e_1$$

$$\boxed{\mathbf{m} = \mathsf{cte}}$$

$$\boxed{\mathbf{Q}}$$

$$\boxed{\mathbf{Cylindre/Piston}}$$

Si l'évolution du système est instationnaire, l'équation de la conservation d'énergie s'écrit :

Reprenons l'équation (1.31), si on suppose qu'il n'y a pas de travail externe et d'échange de chaleur en phase de combustion (par exemple le cas des MCI où la combustion se produit dans un laps de temps très court par rapport au mouvement du piston et au temps caractéristique de l'échange de chaleur, aussi le volume de la chambre peut être considéré constant durant cette phase), dans ce cas l'équation se simplifie à :

$$\Delta e_{12} = e_2 - e_1 = 0 \tag{1.33}$$

Ou bien:

$$\left(u + \frac{1}{2}v^2 + gz\right)_2 - \left(u + \frac{1}{2}v^2 + gz\right)_1 = 0 \tag{1.34}$$

Généralement les vitesses à l'entrée et à la sortie de la chambre de combustion sont comparables ou même négligeable. Aussi les dimensions de la chambre ne sont pas importante ce qui permet d'éliminer l'effet de la pesanteur. On écrit donc :

$$u_2 - u_1 = 0 ag{1.35}$$

Sachant que u = h - Pv (avec v est le volume massique), cette équation s'écrit :

$$(h - Pv)_2 - (h - Pv)_1 = 0 (1.36)$$

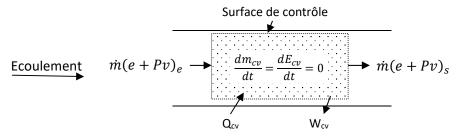
En réarrangeant les termes, on écrit :

$$h_2 - h_1 = (P_2 v_2 - P_1 v_1) (1.37)$$

En termes de grandeurs extensives, cette équation s'écrit (multipliant par la masse *m*):

$$H_2 - H_1 = (P_2 V_2 - P_1 V_1)$$

Notons que le volume de la chambre de combustion est constant au moins le long de la phase de combustion $(V_2 = V_1 = V)$, cela donne :


$$H_2 - H_1 = V(P_2 - P_1) (1.38)$$

1.7 Première loi pour un volume de contrôle fixe :

Prenons le cas d'un volume de contrôle où le fluide peut traverser les limites de l'entrée « e » vers la sortie « s », le travail des forces de pression (travail d'aspiration et d'éjection) sur les frontières est :

$$\dot{W_p} = -\dot{m}Pv = -\dot{m}[(Pv)](Pv$$

La première loi s'écrit donc :

Dans l'écriture de l'équation (1.39) on a supposé que :

- 1- Le volume de contrôle est fixe par rapport au système de coordonnées. Cela élimine toute interaction du travail associé aux déplacements des limites et aussi la nécessité de considérer les variations dans l'énergie cinétique et potentielle du volume de contrôle luimême.
- 2- Les propriétés du fluide sont partout indépendantes du temps.
- 3- Les propriétés du fluide sont uniformes à l'entrée et à la sortie du volume de contrôle, cela permet de prendre des valeurs constantes au lieu de faire des intégrales de surface.
- 4- On suppose qu'il y'a une seule entrée et une seule sortie pour simplifier la forme finale du résultat tout en gardant la possibilité de faire une extrapolation vers plusieurs entrées et sorties.

L'énergie spécifique totale du fluide « e » est composée de l'énergie interne, cinétique et potentielle c.a.d :

$$e = u + \frac{1}{2}v^2 + gz \tag{1.40}$$

Le terme de pression dans l'équation (1.39) peut être combiné avec l'énergie spécifique interne de (1.40) pour donner l'enthalpie :

$$h = u + Pv = u + \frac{P}{\rho}$$
 (1.41)

La combinaison de (1.39) et (1.41) et après réarrangement, on aura :

$$\dot{Q_{cv}} - \dot{W_{cv}} = \dot{m} \left[(h_s - h_e) + \frac{1}{2} (v_s^2 - v_e^2) + g(z_s - z_e) \right]$$
 (1.42)

Pour un kg de fluide on aura :

$$\dot{q_{cv}} - \dot{w_{cv}} = (h_s - h_e) + \frac{1}{2}(v_s^2 - v_e^2) + g(z_s - z_e)$$
 (1.43)

Dans le cas des chambres de combustion des turbomachines, on néglige le travail externe et les pertes de chaleur, aussi les vitesses à l'entrée et la sortie sont comparables et la chambre est horizontale. L'équation (1.43) se simplifie à :

$$h_s - h_e = 0 \tag{1.44}$$

Ou bien en termes de quantités extensives :

$$H_s - H_e = 0 (1.45)$$

1.8. Définitions et propriétés physico-chimiques des combustibles et carburants.

Un combustible est quelque chose qui peut brûler. Un carburant est un combustible qui alimente un moteur pour produire de l'énergie mécanique.

1.8.1. Définitions des combustibles

Dans le langage courant, le terme « combustible » est souvent réservé aux produits utilisés pour le chauffage (bois, charbon, produits pétroliers...). Dans les faits, ce qualificatif s'applique à tout composé susceptible de s'unir à un oxydant (presque toujours l'oxygène de l'air) et capable de se consumer.

Dans la première acception, « les combustibles sont des produits dont la combustion en présence d'air dans les brûleurs, foyers, fours ou chaudières fournit de l'énergie thermique. Celle-ci est utilisée dans le secteur domestique et commercial (chauffage, cuisine, parfois éclairage), dans l'industrie (apport de chaleur dans les réactions chimiques endothermiques, production de vapeur et d'électricité), ou encore dans l'agriculture (séchage des récoltes).

Les combustibles se distinguent des carburants qui sont destinés à la production d'énergie mécanique dans les moteurs. On notera que certains produits comme les gaz de pétrole liquéfiés (GPL), le fioul domestique (FOD) et le fioul lourd peuvent être utilisés à la fois comme combustibles et carburants. »

Les combustibles se répartissent en trois grandes catégories selon leur état physique habituel. On distingue ainsi:

• les combustibles solides (charbon, bois, paille...);

- les combustibles liquides (GPL, FOD, fioul lourd et produits assimilés), tous issus du pétrole brut et parfois, pour une très faible part, de la biomasse (dérivés d'huiles végétales);
- les gaz combustibles, le gaz naturel constituant, à lui seul, une source d'énergie primaire importante.

La seconde acception plus large englobe évidemment un plus grand nombre de substances, dont la vocation dans l'industrie, n'est pas forcément d'être brûlées pour produire de l'énergie. Dans ce cas l'appellation combustible renvoie aux propriétés chimiques, aux précautions de manipulation et de stockage.

Certains produits combustibles ont la propriété de s'enflammer vivement et de brûler avec production de flammes ; ils sont qualifiés de « produit inflammable ». Pour caractériser l'inflammabilité des liquides, on utilise la notion de point d'éclair. Le « point d'éclair » est la température minimale à laquelle, dans des conditions d'essais spécifiés, un produit émet suffisamment de gaz inflammables capables de s'enflammer momentanément en présence d'une source d'inflammation.

Par ailleurs, les gaz, vapeurs, brouillards de produits combustibles, mélangés à l'air, sont explosifs dans le domaine de concentration compris entre la limite inférieure d'explosivité (LIE) et la limite supérieure d'explosivité (LSE). En dessous de la LIE, le mélange est trop pauvre en combustible pour donner lieu au phénomène explosif. Au-dessus de la LSE, le mélange est trop riche en combustible et ne contient pas suffisamment d'oxygène.

Le triangle du feu montrant les trois éléments indispensables pour une combustion chimique

La combustion est une réaction chimique d'oxydation d'un combustible par un comburant, qui nécessite une source d'énergie. Elle met en jeu trois éléments nécessaires :

- le combustible, la matière susceptible de brûler (solide : charbon...; liquide : essence, solvants...; gazeuse : propane, butane...), etc.
- le comburant, en se combinant avec un autre corps, permet la combustion (oxygène, peroxydes, chlorates...)
- l'énergie d'activation, l'énergie minimum nécessaire au démarrage de la réaction chimique de combustion ; elle est apportée par une source de chaleur, une étincelle...

qui constituent le triangle du feu.

L'absence d'un des trois éléments empêche le déclenchement de la combustion.

La suppression d'un des trois éléments arrête le processus.

Le feu s'éteint de lui-même, s'il n'y a pas assez de comburant, si le combustible manque ou si le foyer est refroidi.

1.8.2. Types de carburants

Comme son nom l'indique, un carburant contient du carbone. Dans le cas de l'hydrogène par exemple on parlera de combustible. Le carburant est souvent un liquide et parfois un gaz.

Les carburants peuvent être classés de différentes manières. On peut par exemple distinguer les carburants fossiles, des biocarburants, des ergols.

- Les carburants fossiles sont ceux qui proviennent de la transformation des matières organiques mortes mélangées à divers minéraux à de grandes profondeurs. Cette transformation nécessite plus d'un million d'années et se déroule à des températures et pressions très élevées. Les carburants fossiles sont en quantité limitée sur terre. La diminution future de la production de carburants est traitée dans l'article sur le pic de production. Les carburants issus du pétrole sont aussi appelés hydrocarbures.
- Les biocarburants eux, proviennent de plantes ou animaux (non fossilisés). Parmi les produits développés commercialement, citons le bioéthanol et le biodiesel.
- Les ergols liquides voir solides sont utilisés dans les moteurs de fusées anaérobie, rare type de moteur capable de fonctionner en dehors de l'atmosphère.

1.8.3. Le carburant, un élément stratégique

Les carburants, encore le plus souvent dérivés du pétrole, deviennent stratégiques dans l'économie de nombreux secteurs industriels, agricoles, forestiers, halieutiques, tourisme, aviation, marine marchande. L'augmentation des prix du pétrole et la perspective d'un épuisement de la ressource ont incité les gros utilisateurs de carburants à demander à leurs états des aides financières ou une défiscalisation.

1.8.4. Indice de cétane et d'octane

L'indice de cétane évalue la capacité d'un carburant à s'enflammer sur une échelle de 0 à 100. Il est particulièrement important pour les moteurs Diesel où le carburant doit s'auto-enflammer sous l'effet de la compression. Un carburant à haut indice de cétane est caractérisé par sa facilité à s'auto-allumer.

L'indice de cétane est au moteur Diesel ce que l'indice d'octane est au moteur à essence. Toutefois, ils décrivent des qualités de carburant radicalement opposées, adaptées au type de moteur. Si le premier décrit une capacité d'auto-inflammation recherchée par le moteur Diesel, le second décrit une capacité de résistance à la détonation recherchée par le moteur à essence.

La définition a été posée par Wilfrid de Nercy, ingénieur chez Shell, en 1958.

On dit qu'un carburant a un indice de cétane de x, lorsque celui-ci a le même pouvoir d'auto-inflammation qu'un mélange constitué de x% en volume de n-cétane et (100-x)% d'alpha-méthylnaphtalène.

Un additif pour carburant, le Tétranitrométhane peut améliorer l'indice de cétane du fuel-diesel.

Échelle

• 0 : alpha-méthylnaphtalène (C₁₀H₇CH₃) ;

- 15 : isocétane (2,2,4,4,6,8,8-heptaméthylnonane) (iso-C₁₆H₃₄) utilisé comme nouvelle référence à la place de l'alpha-méthylnaphtalène ;
- 40 : fioul domestique ;
- 51 : gazole ;
- 85 96 : diéthyl éther C₄H₁₀O ;
- $100 : \text{n-cétane} (C_{16}H_{34}).$

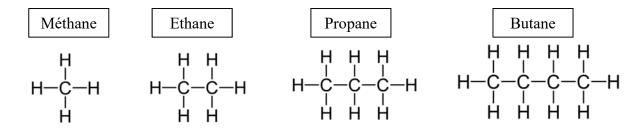
1.9 Notions sur la chimie des hydrocarbures

Les différentes familles des hydrocarbures sont distinguées par :

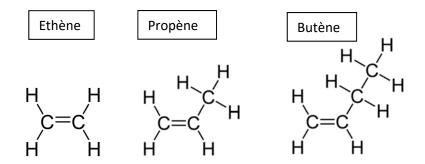
- Les liaisons entre les atomes de carbone carbone-carbone, (C-C) en simple liaison dites alcanes ou (C=C) en double dites alcènes ou (C≡C) en triple liaisons dites aussi alcynes.
- Aussi au fait que les molécules sont arrangées en chaines ouvertes (toutes les limites des chaines sont déconnectées) ou fermées aussi dites anneaux ou cycliques.

Les alcanes, alcènes et alkyles sont des structures de chaines ouvertes, tandis que les cyclanes et les aromatiques ont des structures annulaires.

Pour les familles des chaines ouvertes, la nomenclature suivante est utilisée pour démontrer le nombre d'atomes de carbone contenu dans un membre d'une famille particulière.


Nb	Dénomination	Nb	Dénomination	Nb	Dénomination
atomes		atomes		atomes	
1	Méth	7	Pent	9	Non
2	Eth	6	Hex	10	Dec
3	Prop	7	Нер	11	Undec
4	But	8	Oct	12	Dodec

Nom de la famille	Formule moléculaire	Liaison C-C
Alcanes	C_nH_{2n+2}	Liaison simple
Alcènes	C_nH_{2n}	Une seule double
Alcynes	C_nH_{2n-2}	Une seule triple


	C1	C2	C3	C4
Alcanes	Méthane	Ethane	Propane	Butane
Alcènes		Ethène	Propène	Butène
		Ethylène	Propylène	Butylène
Alcynes		Ethyne	Propyne	Butyne
·		Acetylene	Methyl acetylene	Ethyl acetylene

Ci-dessous quelques exemples d'hydrocarbures :

Alcanes

Alcènes

Alcynes

Chapitre 2

Mélanges de réactifs et produits de combustion

2.1 Stœchiométrie

La quantité stœchiométrique d'un oxydant (l'air par exemple) est la quantité nécessaire pour bruler complètement une quantité de combustible. Si on alimente par une quantité supérieure d'oxydant, le mélange est dit pauvre. Si par contre on alimente par une quantité inférieure, le mélange est dit riche. L'oxydant (où l'air) stœchiométrique est déterminé par l'écriture d'un simple bilan atomique, en supposant que le combustible réagit pour donner les produits. Pour un hydrocarbure $C_x H_y$, la relation stœchiométrique peut être exprimée par :

$$C_x H_y + a_{st}(O_2 + 3.76N_2) \rightarrow \alpha CO_2 + \beta H_2 O + \gamma N_2$$
 (2.1)

Pour déterminer le coefficients stœchiométriques α , β et γ , on fait un bilan atomique pour chaque atome à savoir C, H, N, O. Commençons par le carbone, à gauche de la réaction on a x atomes, à droite α donc $x = \alpha$. En procède de la même façon on trouve :

• Bilan sur H: $y = 2\beta$ donc $\beta = y/2$

• Bilan sur 0: $2a_{st} = 2\alpha + \beta = 2x + y/2$ onc $a_{st} = x + y/4$

• Bilan sur N : $3.76a_{st} = \gamma$

On trouve la réaction équilibré de l'hydrocarbure général avec l'air :

$$C_x H_y + a_{st}(O_2 + 3.76N_2) \rightarrow xCO_2 + \frac{y}{2}H_2O + 3.76aN_2$$
 (2.2)

Avec
$$a_{st} = x + \frac{y}{4} \tag{2.3}$$

On a supposé que l'air est composé de 21% de O_2 et 79% de N_2 en volume, c.à.d. pour chaque mole de O_2 , il y'a 3.76 moles N_2 .

2.1 Rapport stœchiométrique, richesse et excédant d'air

Le rapport stœchiométrique est défini par le rapport de la masse ou débit d'air à celui du fuel, on écrit :

$$\left(\frac{A}{F}\right)_{st} = \left(\frac{\dot{m}_{air}}{\dot{m}_{fuel}}\right)_{st} \tag{2.4}$$

La masse d'air peut être déduite de la réaction (29)

$$\dot{m}_{air} = N_{air} M_{air} = 4.76 a_{st} M_{air} \tag{2.5}$$

Celle du fuel, puisqu'on une seule mole :

$$\dot{m}_{fuel} = N_{fuel} M_{fuel} = 1 * M_{fuel} \tag{2.6}$$

En remplaçant a_{st} par $x + \frac{y}{4}$ on obtient :

$$\left(\frac{A}{F}\right)_{st} = 4.76\left(x + \frac{y}{4}\right) \frac{M_{Wair}}{M_{Wfuel}} \tag{2.7}$$

Le tableau suivant donne les valeurs de ce rapport pour quelques réactions :

$CH_4 + air$	17.11
$H_2 + O_2$	8.00
$C_{(s)} + air$	11.4

Il faut noter que dans la deuxième réaction l'oxydant est l'oxygène pur, sa masse molaire est différente de celle de l'air.

La richesse ϕ est un facteur très important dans l'étude de la performance des systèmes. Elle est définie par le rapport des rapports stœchiométriques à l'état stœchiométrique et réel. Ce paramètre indique si le mélange est riche en combustible où pauvre :

$$\phi = \frac{\left(\frac{A}{F}\right)_{st}}{\left(\frac{A}{F}\right)} = \frac{\left(\frac{F}{A}\right)}{\left(\frac{F}{A}\right)_{st}} \tag{2.8}$$

$$\begin{array}{l} \text{Pour} \ \begin{cases} \phi > 1 \rightarrow \textit{m\'elange riche} \\ \phi < 1 \rightarrow \textit{m\'elange pauvre} \\ \phi = 1 \rightarrow \textit{m\'elange stoechiom\'etrique} \\ \end{cases}$$

L'excédent d'air
$$\lambda$$
 est l'inverse de la richesse, il est définit par : $\lambda = \frac{1}{\phi}$ (2.9)

Deux autres paramètres sont utilisés pour définir la stœchiométrie relative et l'air stœchiométrique, le pourcentage d'air stœchiométrique et le pourcentage d'excès d'air :

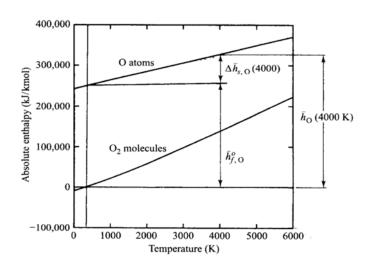
% air st =
$$\frac{100\%}{\phi}$$
 (2.10)

% excés d'air =
$$\frac{(1-\phi)}{\phi}$$
100% (2.11)

2.2 Enthalpie et enthalpie de formation absolue (standard)

Dans les systèmes réactifs, le concept des enthalpies standard où absolues est extrêmement important. Pour chaque espèce, on définit une enthalpie standard où absolue qui est la somme de l'enthalpie de formation, h_f liée à la nature de l'espèce, et l'enthalpie sensible, Δh_s associée à la variation de la température. On écrit pour l'enthalpie molaire absolue de l'espèce « i »:

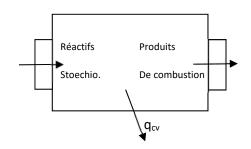
$$\bar{h}_i(T) = \bar{h}_{f,i}^0(T_{ref}) + \Delta \bar{h}_{s,i}(T_{ref}) \tag{2.12}$$


Pour utiliser cette relation en pratique, il est nécessaire de définir un état standard où de référence indiquée par « ref ». On utilise une température, T_{ref}=25°C (298.15K), et une pression, P_{ref}=P⁰=1 atm (101325 Pa). En plus, on adopte la convention d'enthalpie de formation nulle pour les éléments existant dans leurs états naturels à l'état de référence de T et P.

Par exemple, à 25°C et 1 atm, l'oxygène existe sous forme de molécule diatomique, $\left(\overline{h}_{f,0_2}^0\right)_{298}=0.$

Pour former des atomes d'oxygène monoatomique à l'état standard, il faut rompre une liaison chimique très forte. L'énergie de dissociation de la liaison d'O₂ à 298 K est 498390 Kj/kmole de O₂. Cette rupture donne deux atomes O. Alors, l'enthalpie de formation de l'oxygène atomique est la moitié de ce celle de dissociation de l'O₂, $(\bar{h}_{f,0}^0)_{298} = 249195 \, \text{KJ/kmole}$.

Les enthalpies de formation ont une interprétation physique très claire, c'est la variation d'enthalpie associée à une rupture des liaisons chimiques d'un élément aux conditions standard pour former un nouveau composé.


La représentation graphique de l'enthalpie absolue permet de comprendre et d'utiliser ce concept. A 298.15 K, on note que $\bar{h}_{f,0_2}=0$ (par définition) et l'enthalpie absolue de O est égale à l'enthalpie de formation, puisque celle sensible est nulle à 289.15K. A 4000K, on remarque une contribution additionnelle de l'enthalpie sensible dans celle absolue.

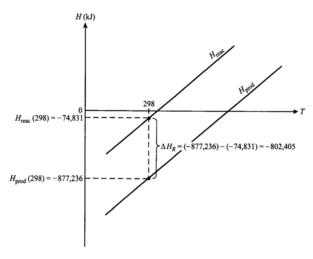
Les enthalpies de formation à l'état de référence sont données. Celles sensibles pour plusieurs espèces sont données en fonction de la température sous forme de tableaux ou de polynômes.

2.3 Enthalpie de combustion (chaleur de réaction)

Considérons un réacteur stationnaire parfait dans lequel en injecte un mélange stœchiométrique en l'existence des produits de réaction à l'état standard (25°C et 1atm). Le procédé de combustion est complet, le fuel est complètement consommé pour donner le CO₂ et l'H₂O. Pour que les produits et le gaz injecté soient à la même température, il faut évacuer la chaleur en permanence du réacteur.

Cette quantité de chaleur est reliée aux enthalpies absolues des réactifs et produits par (28) en l'absence du travail et en négligeant les vitesses et les hauteurs:

$$q_{cv} = h_s - h_e = h_{prod} - h_{reac} (2.13)$$


La définition de l'enthalpie de réaction où de combustion Δh_R (par unité de masse du mélange),

est
$$\Delta h_R = q_{cv} = h_{prod} - h_{reac} \tag{2.14}$$

En termes de propriétés extensives, on écrit :

$$\Delta H_R = Q_{cv} = H_{prod} - H_{reac} \tag{2.15}$$

Prenons par exemple la combustion du méthane avec l'air à 25°C et 1 atm. L'enthalpie $_{H}$ des réactifs stœchiométriques du CH₄ et l'air pour 1 kmole du fuel qui réagit est -748831 KJ. Aux mêmes conditions (25°C et 1 atm), les produits de $_{H_{\text{resc}}(298)=-74,831}$ combustion ont une enthalpie absolue de -877236 J. L'enthalpie absolue de combustion des produits se $_{H_{\text{prod}}(298)=-877,236}$ trouve au dessous de celle des réactifs.

L'enthalpie de combustion peut être calculée par :

$$\Delta H_R = -877236 - 74831$$
$$= -802405 \, Kj.$$

2.4 Facteur de pondération de l'enthalpie

Si on veut pondérer la quantité d'énergie ou l'enthalpie par unité de masse du fuel ou de mélange, on utilise la relation :

$$\Delta h_R \left(\frac{KJ}{kg \ m\'el}\right) m_{m\'el}(kg \ m\'el) = \Delta h_R \left(\frac{KJ}{kg \ fuel}\right) m_{fuel}(kg \ fuel) \tag{2.16}$$

Avec:
$$\frac{m_{fuel}}{m_{m\'el}} = \frac{m_{fuel}}{m_{fuel} + m_{air}} = \frac{1}{1 + (\frac{A}{F})}$$
 (2.17)

Dans le calcul précédent on a :

$$\Delta h_R \left(\frac{KJ}{kgfuel} \right) = \frac{\Delta H_R}{M_{Wfuel}} = \frac{-802405}{16.043} = -50016$$

Pour le méthane (A/F) = 17.11 ce qui donne
$$\Delta h_R \left(\frac{KJ}{kgm\'el} \right) = \frac{-50016}{1+17.11} = -2761.8$$

On note que la valeur de l'enthalpie de combustion dépend de la température choisie pour son évaluation car les enthalpies des réactifs et des produits varient avec la température. La distance entre les courbes H_{Prod} et H_{reac} n'est pas constante.

Pour un hydrocarbure $C_x H_y$, l'enthalpie de réaction (combustion) est donnée par :

$$\Delta H_R = N_{CO_2} \bar{h}_{f,CO_2}^0 + N_{H_2O} \bar{h}_{f,H_2O}^0 - N_{fuel} \bar{h}_{f,fuel}^0$$
 (2.18)

2.5 Pouvoirs calorifiques

Le pouvoir calorifique supérieur, P_{cs}, est la chaleur de combustion calculée, par kilogramme de combustible, en supposant que l'eau dans les produits de combustion est condensée en liquide. Ceci libère le maximum d'énergie. Le pouvoir calorifique inférieur, P_{ci}, correspond au cas où l'eau n'est pas condensée et quitte la chambre sous sa forme vapeur. Pour le méthane CH₄ le P_{cs} est de 11% supérieur au P_{ci}. Les valeurs des pouvoirs calorifiques sont données sous forme de tableaux pour différents combustibles.

Généralement, les pouvoirs calorifiques sont donnés en Kj/Kg de fuel, ils sont exprimés en fonction des chaleurs (enthalpies) de réaction par :

$$Pci = \frac{-\Delta H_R}{M_{fuel}} \tag{2.19}$$

A son tour le pouvoir calorifique supérieure s'écrit :

$$Pcs = Pci + \frac{y}{2} \frac{\overline{h}_{fgH_20}^0}{M_{fuel}}$$
 (2.20)

Exemples

Considérons un mélange stechiométrique d'iso-octane C_8H_{18} avec l'air, déterminer :

- 1. La fraction molaire du fuel,
- 2. Le rapport A/F,
- 3. La fraction de H_2O dans les produits,
- 4. L'enthalpie de combustion,
- 5. Le pouvoir calorifique inférieur,
- 6. Le pouvoir calorifique supérieur.

Solutions

D'après la réaction globale stœchiométrique et complète, celle de l'iso-octane avec l'air s'écrit :

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 3.76 * 12.5N_2$$

1. La fraction molaire du fuel est donnée par :

$$x_{C_8H_{18}} = \frac{N_{C_8H_{18}}}{N_{C_8H_{18}} + N_{O_2} + N_{N_2}} = \frac{1}{1 + 12.5 + 12.5 * 3.76} = 0.0165$$

2. Le rapport A/F est donné par :

$$\left(\frac{A}{F}\right)_{st} = 4.76*12.5 \frac{M_{Wair}}{M_{Wfuel}} = 15.16$$
3. La fraction molaire de H_2O dans les produits est :

$$x_{H_2O} = \frac{N_{H_2O}}{N_{CO_2} + N_{H_2O} + N_{N_2}} = \frac{9}{8 + 9 + 12.5 * 3.76} = 0.141$$

4. La chaleur de réaction ΔH_R est donnée par :

$$\Delta H_R = H_P - H_R = N_{CO_2} \bar{h}_{f,CO_2}^0 + N_{H_2O} \bar{h}_{f,H_2O}^0 - N_{C_8H_{18}} \bar{h}_{f,C_8H_{18}}^0$$

$$= 8(-393546) + 9(-241845) - 1(-208447) = -5116526 \, Kj$$

5. Le pouvoir calorifique inférieur est :

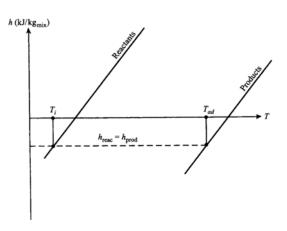
$$Pci = \frac{-\Delta H_R}{M_{C_8H_{18}}} = \frac{5116526}{114} = 44882 \frac{Kj}{Kg}$$
6. Le pouvoir calorifique supérieur est :

$$Pcs = Pci + \frac{y}{2} \frac{\overline{h}_{fgH_20}^0}{M_{C_8H_{18}}} = 44882 + 9 * \frac{44010}{114} = 48356.5 \frac{Kj}{Kg}$$

Chapitre 3

Température adiabatique de la flamme

On définit deux températures adiabatiques de la flamme, une à pression constante et l'autre à volume constant.


3.1 Température adiabatique de la flamme à pression constante

Commençons par les systèmes ou la combustion se fait à pression constante. Le premier principe dicte que l'enthalpie absolue des réactifs à l'état initial (T_i=298K, P=1atm) est égale à celle des produits à l'état final (T=T_{ad}, P=1atm), c.à.d. l'application de (28) donne :

$$H_{reac}(T_i, P) = H_{prod}(T_{ad}, P)$$
(3.1)

Où par unité de masse du mélange
$$h_{reac}(T_i, P) = h_{prod}(T_{ad}, P)$$
 (3.2)

Cette définition est illustrée graphiquement par la figure ci-contre. L'évaluation de la température adiabatique de la flamme nécessite la connaissance des produits de combustion. A la température de la flamme, les produits se dissocient et le mélange se compose de plusieurs espèces. La température de la flamme est de l'ordre de quelques milliers de Kelvin.

Pour un combustible C_xH_y , la réaction de combustion complète stœchiométrique pour un mélange pauvre s'écrit :

$$C_x H_y + \frac{a_{st}}{\phi} (O_2 + 3.76 N_2) \Rightarrow xCO_2 + \frac{y}{2} H_2 O + \gamma O_2 + 3.76 \frac{a_{st}}{\phi} N_2$$
 (3.3)

Si on injecte les réactifs à la température $T_{\rm inj}$, l'enthalpie des réactifs s'écrit :

$$H_{R} = \bar{h}_{f,fuel}^{0} + (T_{ini} - T_{réf}) \sum_{iR} N_{iR} \bar{c}_{p,iR}$$
(3.4)

L'enthalpie des produits s'écrit à son tour :

$$H_{P} = x \bar{h}_{f,CO_{2}}^{0} + \frac{y}{2} \bar{h}_{f,H_{2}O}^{0} + \sum_{iP} N_{iP} \int_{T_{r\acute{e}f}}^{T_{ad}} \bar{c}_{p,iP} dT$$
(3.5)

Ici les indices iR et iP parcourent les réactifs et les produit simultanément.

Le problème donc réside dans la détermination des intégrales car la température adiabatique est le paramètre cherché. Pour cela il faut soit connaître la dépendance des chaleurs spécifiques de la température soit de supposer que ces dernières sont constante et de les estimer à une température prescrite. Les chaleurs spécifiques sont approximées par des fonctions polynômiales pour des intervalles bien définis, si on utilise ces fonctions on doit faire recours aux méthodes numériques pour déterminer la température adiabatique de la flamme. Pour simplifier les calculs, on suppose que les $\bar{c}_{p,iP}$ sont constantes et on prescrit une température $T_{\acute{e}v}$ pour les évaluer, on peut donc écrire :

$$H_P = x \bar{h}_{f,CO_2}^0 + \frac{y}{2} \bar{h}_{f,H_2O}^0 + (T_{ad} - T_{réf}) \sum_{iP} N_{iP} \bar{c}_{p,iP} (T_{\acute{e}v})$$
(3.6)

En égalisant H_P et H_R , on peut calculer la température adiabatique de la flamme :

$$T_{ad} = T_{r\acute{e}f} + \frac{-(x\bar{h}_{f,CO_2}^0 + \frac{y}{2}\bar{h}_{f,H_2O}^0 - \bar{h}_{f,fuel}^0) + (T_{inj} - T_{r\acute{e}f})\sum_{iR}N_{iR}\bar{c}_{p,iR}}{\sum_{iP}N_{iP}\bar{c}_{n\,iP}(T_{\acute{e}v})}$$
(3.7)

On voit que le premier terme entre () correspond à l'enthalpie de réaction du fuel considéré ΔH_R , on peut donc écrire la température adiabatique de la flamme en fonction du Pci du combustible :

$$T_{ad} = T_{réf} + \frac{PciM_{fuel} + (T_{inj} - T_{réf}) \sum_{iR} N_{iR} \bar{c}_{p,iR}}{\sum_{iP} N_{iP} \bar{c}_{p,iP} (T_{\acute{e}v})}$$
(3.8)

Si on injecte les réactifs à la température de référence, cette relation se simplifie à :

$$T_{ad} = T_{r\acute{e}f} + \frac{PciM_{fuel}}{\sum_{iP} N_{iP}\bar{c}_{p,iP}(T_{\acute{e}v})}$$
(3.9)

Cette formule peut être généralisée pour l'injection d'un mélange de plusieurs fuels avec l'air. Si les fuels ont les pouvoirs calorifiques PCI_i et les masses molaires M_i , on écrit :

$$T_{ad} = T_{réf} + \frac{\sum_{i} PCI_{i} M_{fuel,i}}{\sum_{i} N_{i} P\bar{c}_{p,i} P(T_{\acute{e}v})}$$

$$(3.10)$$

3.2 Température adiabatique de la flamme à volume constant

Pour la température adiabatique de la flamme à volume constant, ce qui est le cas des moteurs à combustion interne car la combustion est très rapide ce qui permet de supposer que le volume est constant au moment de la combustion. La première loi de la thermodynamique (1.35) s'écrit :

$$U_{reac}(T_{in}, P_{in}) = U_{prod}(T_{ad}, P_f)$$
(3.11)

Puisque les tables thermodynamiques donnes les enthalpies et non pas les énergies internes on utilise la relation U=H-PV pour écrire :

$$H_{reac} - H_{prod} - V(P_{in} - P_f) = 0$$
(3.12)

On utilise ensuite l'équation d'état du gaz pour éliminer le terme PV.

$$P_{in}V = \sum_{reac} N_{in}R_uT_{in} = N_{reac}R_uT_{in}$$
 (3.13)

$$P_f V = \sum_{prod} N_f R_u T_{ad} = N_{prod} R_u T_{ad}$$
 (3.14)

Ce qui donne

$$H_{reac} - H_{prod} - R_u (N_{reac} T_{in} - N_{prod} T_{ad}) = 0$$
(3.15)

On peut écrire cette équation par unité de masse, reconnaissons que $\frac{m_{m\acute{e}l}}{N_{reac}}=M_{wrea}$ et $\frac{m_{m\acute{e}l}}{N_{prod}}=M_{wprod}$ on obtient :

$$h_{reac} - h_{prod} - R_u \left(\frac{T_{in}}{M_{wrea}} - \frac{T_{ad}}{M_{wmrod}} \right) = 0$$
(3.16)

Puisque la composition du mélange de produits à l'équilibre dépend de T et P, l'utilisation de (39) où (40) avec une loi pour le gaz parfait et une équation d'état appropriée, h = h(T, P) = h(T) pour une gaz parfait, donne directement $T_{\rm ad}$.

L'équation (40) s'écrit :
$$H_P - H_R = R_u (N_P T_{ad} - N_R T_{ini})$$
 (3.17)

Le terme à gauche est similaire de celui déjà développé, on a donc :

$$H_{R} = \bar{h}_{f,fuel}^{0} + (T_{inj} - T_{réf}) \sum_{iR} N_{iR} \bar{c}_{p,iR}$$
(3.18)

$$H_P = x \bar{h}_{f,CO_2}^0 + \frac{y}{2} \bar{h}_{f,H_2O}^0 + (T_{ad} - T_{r\acute{e}f}) \sum_{iP} N_{iP} \bar{c}_{p,iP} (T_{\acute{e}v})$$
(3.19)

Après réarrangement, on trouve :

$$T_{ad} = \frac{PciM_{fuel} + T_{r\acute{e}f}(\sum_{iP} N_{iP}\bar{c}_{p,iP} - \sum_{iR} N_{iR}\bar{c}_{p,iR}) + T_{inj}(\sum_{iR} N_{iR}\bar{c}_{p,iR} - R_uN_R)}{\sum_{iP} N_{iP}\bar{c}_{p,iP} - R_uN_P}$$
(3.20)

Si $T_{réf} = T_{inj}$ la température adiabatique s'écrit :

$$T_{ad} = \frac{PciM_{fuel} + T_{réf}(\sum_{iP} N_{iP} \bar{c}_{p,iP} - R_u N_R)}{\sum_{iP} N_{iP} \bar{c}_{p,iP} - R_u N_P}$$
(3.21)

En général, le nombre de moles des réactifs et des produits sont très proches, on peut faire l'hypothèse $N_P=N_R$ on écrit :

$$T_{ad} = T_{réf} + \frac{PciM_{fuel}}{\sum_{iP} N_{iP}\bar{c}_{p,iP} - R_u N_P}$$
(3.22)

En comparant cette relation à celle déjà déduite pour ce cas de la pression constante, on remarque que :

$$T_{ad}]_{V=cst} > T_{ad}]_{P=cst} \tag{3.23}$$

Exemple:

On reprend la combustion de l'iso-octane où on injecte les réactifs à la température de référence. Aussi les chaleurs spécifiques des produits sont évaluées à 2000K. Calculer la température adiabatique de la flamme si :

- 1. La pression est constante,
- 2. Le volume est constant, calculer la pression en fin de combustion si celle initiale est 1 atm.

Solution:

La réaction de l'iso-octane avec l'air s'écrit :

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 3.76 * 12.5N_2$$

1. Pour une pression constante, la température adiabatique de la flamme est donnée par :

$$T_{ad} = T_{réf} + \frac{PciM_{fuel}}{\sum_{iP}N_{iP}\bar{c}_{n,iP}(T_{\acute{e}v})}$$

Le Pci est déjà calculé dans l'exemple précédent, $Pci_{C_8H_{18}}=44882 \frac{Kj}{Kg_{C_8H_{18}}}$, dans ce cas

 $T_{\acute{e}v} = 2000K$. Les $\bar{c}_{p,iP}(T_{\acute{e}v})$ sont obtenues des tables :

$$\bar{c}_{p,CO2}(2000K) = 60.433, \quad \bar{c}_{p,H20}(2000K) = 51.143, \quad \bar{c}_{p,N2}(2000K) = 35.988 \, Kj/Kmole$$

Le remplacement donne :

$$T_{ad} = 298 + \frac{44882 * 114}{8 * 60.433 + 9 * 51.143 + 3.76 * 12.5 * 35.988} = 2240 K$$

2. Pour un volume constant, la température adiabatique de la flamme est :

$$T_{ad} = \frac{{}^{PciM_{fuel} + T_{r\acute{e}f}}(\sum_{iP} N_{iP} \bar{c}_{p,iP} - R_u N_R)}{\sum_{iP} N_{iP} \bar{c}_{p,iP} - R_u N_P}$$

On calcule $N_R = 60.5$ et $N_P = 64$, cela donne

$$T_{ad} = \frac{44882*114+298(8*60.433+9*51.143+3.76*12.5*35.988-8.314*60.5)}{8*60.433+9*51.143+3.76*12.5*35.988-8.314*64} = 2735 \; K$$

Si on suppose que $N_R \approx N_P$, on obtient $T_{ad} = 2730 \, K$, cette hypothèse est valable pour ces calculs car l'écart absolue ne dépasse pas 2 pour mille.

Pour la pression en fin de combustion on applique l'équation d'état du gaz parfait au début et à la fin de la combustion,

$$P_{in}V_{in} = N_R R_u T_{inj}$$

$$P_{fin}V_{fin}=N_PR_uT_{ad}$$

La division des deux équations membre par membre donne,

$$P_{fin} = \frac{T_{ad}}{T_{inj}} P_{in}$$

L'application numérique donne

$$P_{fin} = \frac{2735}{298} 1 = 9.2 atm$$

Chapitre 4

Equilibre chimique

Dans les procédés de combustion à hautes températures, les produits de combustion ne sont pas des mélanges simples de gaz idéals comme on a déjà vu dans les bilans atomiques. En réalité, les espèces majoritaires se dissocient produisant d'autres espèces minoritaires. Sous certaines conditions, ces espèces minoritaires sont présentes en grandes quantités. Par exemple, la combustion idéale d'un hydrocarbure dans l'air donne les espèces suivantes : CO₂, H₂O, O₂ et N₂. La dissociation de ces espèces et la réaction entre les nouvelles espèces donne : H₂, OH, CO, H, O, N, NO, et d'autres. Dans cette partie, on va calculer les fractions molaires de ces espèces à une température et pression donnée. Cela est possible, en considérant la conservation des éléments c.à.d. le nombre des atomes de C, H, O et N indépendamment de la façon avec laquelle ils se combinent. Ils y'a plusieurs méthode de calculer l'équilibre chimique, on va considérer l'approche basée sur la constante d'équilibre.

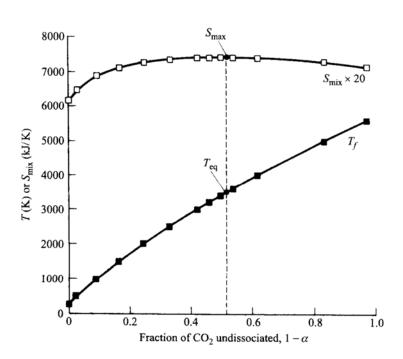
4.1 Deuxième loi de la thermodynamique

L'équilibre chimique trouve ses racines dans la deuxième loi de la thermodynamique. Prenons un volume constant dans lequel une masse constante de réactifs en réaction adiabatique forme des produits. Au cours de la réaction, la température et la pression augmentent jusqu'à l'équilibre final. La première loi de la thermodynamique ne peut pas prédire toute seule l'état final (température, pressure et composition), cela nécessite la deuxième loi. Pour illustrer le problème considérons l'exemple de la combustion du CO.

$$CO + \frac{1}{2}O_2 \to CO_2$$
 (4.1)

Si la température est suffisamment importante, le CO₂ va se dissocier. Supposons que les produits sont seulement le CO₂, CO, et O₂, on peut écrire :

$$\left[CO + \frac{1}{2}O_2\right]_{r\acute{e}actifs\ froids} \rightarrow \left[(1 - \alpha)CO_2 + \alpha CO + \frac{\alpha}{2}O_2\right]_{produits\ chauds} \tag{4.2}$$


Où α est la fraction de CO₂ dissociée. On peut calculer la température adiabatique de la flamme en fonction de la fraction dissociée α . Par exemple, pour α =1, aucune chaleur n'est dégagée et la température, la pression et la composition restent inchangée. Lorsque α =0, le maximum de chaleur est dégagée et la pression et la température doivent avoir leurs maximum permis par la première loi de la thermodynamique, cette variation est montrée par la figure.

Calculons maintenant l'entropie du mélange par sommer les entropies des différentes espèces :

$$S_{m\acute{e}l}(T_f, P) = \sum_{i=1}^{3} N_i \bar{S}_i (T_f, P_i) = (1 - \alpha) \bar{s}_{CO_2} + \alpha \bar{s}_{CO} + \frac{\alpha}{2} \bar{s}_{O_2}$$
 (4.3)

Les entropies individuelles des espèces sont calculées par :

$$\bar{s}_i = \bar{s}_i^0 (T_{ref}) + \int_{T_{ref}}^{T_f} \bar{C}_{p,i} \frac{dT}{T} - R_u ln \frac{P_i}{P^0}$$
(4.4)

En traçant l'entropie du mélange en fonction de la fraction dissociée α , on voit qu'un maximum est atteint pour une valeur intermédiaire de (1- α = 0.5) pour la réaction prise en compte.

Dans notre exemple, on supposé que U,V et m sont constantes ce qui implique qu'il n'y a pas d'échange de chaleur où de travail. Selon la deuxième loi la variation de l'entropie du système s'écrit :

$$dS \ge 0 \tag{4.5}$$

D'où la composition du système va spontanément tendre vers le point maximal d'entropie de part et d'autre car dS est positive. Lorsque le maximum est atteint, aucune variation n'est permise, cela rentre en contradiction avec le deuxième principe (dS<0). Formellement, la condition de l'équilibre peut s'écrire :

$$(dS)_{U,V,m} = 0 (4.6)$$

En résumé, si on fixe l'énergie interne U, le volume V et la masse m d'un système isolé, l'application de la première et deuxième loi et l'équation d'état vont définir la température d'équilibre, la pression et la composition chimique.

4.2 Fonction de Gibbs ou énergie libre

En réalité l'utilisation d'un système isolé d'une masse constante et un volume fixe n'a aucun intérêt pratique. Par exemple, il est fréquent de calculer la composition d'un mélange à une température, une pression et une stœchiométrie donnée. Pour ce problème, l'énergie libre de Gibbs, G, remplace l'entropie comme la propriété thermodynamique la plus importante.

L'énergie libre de Gibbs est définie en terme d'autre propriétés thermodynamique par :

$$G = H - TS \tag{4.7}$$

La deuxième loi est exprimée en fonction de l'énergie libre de Gibbs par :

$$(dG)_{T,P,m} \le 0 \tag{4.8}$$

Cette fonction diminue toujours pour une évolution spontanée d'un système à masse constante isotherme, isobare et sans travail sauf celui des limites (P-dV). Ce principe permet de calculer la composition à l'équilibre d'un mélange à une température et pression données. La fonction de Gibbs atteint un minimum à l'équilibre, en contraste au maximum atteint pour l'entropie.

Alors, à l'équilibre on a :
$$(dG)_{TPm} = 0$$
 (4.9)

Pour un mélange de gaz idéals, la fonction de Gibbs pour l'espèce « i » est donnée :

$$\bar{g}_{i,T} = \bar{g}_{i,T}^0 + R_u T ln(P_i/P^0) \tag{4.10}$$

Où $\bar{g}_{i,T}^0$ est la fonction de Gibbs de l'espèce pure à la pression de l'état standard (c.à.d. $P_i=P^0$) et P_i est la pression partielle. La pression à l'état standard, P^0 dans le dénominateur, est prise par convention 1 atm. Dans les systèmes réactifs, il est nécessaire d'utiliser la fonction de formation de Gibbs,

$$\bar{g}_{f,i}^{0}(T) = \bar{g}_{i}^{0}(T) - \sum_{\text{éléments } j} v_{j}' \, \bar{g}_{j}^{0}(T)$$
(4.11)

Où v_j' sont les coefficients stœchiométriques des éléments nécessaires pour former une mole de l'espèce en question.

La fonction de Gibbs pour un mélange pur de gaz idéals est exprimée par :

$$G_{m\acute{e}l} = \sum N_i \bar{g}_{i,T} = \sum N_i [\bar{g}_{i,T}^o + R_u T ln(P_i/P^0)]$$
 (4.12)

Pour une température et pression constante, les conditions d'équilibre deviennent

$$dG_{m\acute{e}l} = 0 (4.13)$$

Où
$$\sum dN_i [\bar{g}_{i,T}^o + R_u T ln(P_i/P^0)] + \sum N_i d[\bar{g}_{i,T}^o + R_u T ln(P_i/P^0)] = 0$$
 (4.14)

Le second terme dans l'équation (4.14) est nul car :

$$\bar{g}_{i,T}^o = cste$$
 et $d(lnP_i) = dP_i/P_i$ et $\sum dP_i = d\sum P_i = d(P = cste) = 0$

Cela donne:

$$dG_{m\acute{e}l} = 0 = \sum dN_i [\bar{g}_{i,T}^o + R_u T ln(P_i/P^0)]$$
 (4.15)

Pour une réaction qui s'écrit sous la forme générale :

$$aA + bB + \dots \Leftrightarrow eE + fF + \dots$$
 (4.16)

Ou bien

$$aA + bB + 0E + 0F + \cdots \Leftrightarrow 0A + 0B + eE + fF + \cdots$$

La variation dans le nombre de moles de chaque espèce est directement proportionnelle à son coefficient stœchiométrique, c.à.d.

$$dN_A = N_{A prod} - N_{A réact} = 0 - a = -\kappa a,$$

$$dN_B = N_{B prod} - N_{B réact} = 0 - b = -\kappa b,$$

$$dN_E = N_{E prod} - N_{E réact} = e - 0 = +\kappa e,$$

$$dN_E = N_{E prod} - N_{E réact} = f - 0 = +\kappa f,.....$$

$$(4.17)$$

En substituant dans (4.15) et on éliminant la constante de proportionnalité κ , on aura :

$$\begin{split} -a \big[\bar{g}_{A,T}^o + R_u T ln(P_A/P^0) \big] - b \big[\bar{g}_{B,T}^o + R_u T ln(P_B/P^0) \big] - \cdots \\ + e \big[\bar{g}_{E,T}^o + R_u T ln(P_E/P^0) \big] + f \big[\bar{g}_{F,T}^o + R_u T ln(P_F/P^0) \big] + \cdots = 0 \end{split}$$

Après réarrangement en regroupant les termes ensemble

$$-(e\bar{g}_{E,T}^{o} + f\bar{g}_{F,T}^{o} + \dots - a\bar{g}_{A,T}^{o} - b\bar{g}_{B,T}^{o} - \dots) = R_{u}T \ln \frac{(P_{E}/P^{0})^{e}(P_{F}/P^{0})^{f}.etc.}{(P_{A}/P^{0})^{a}(P_{B}/P^{0})^{d}.etc.}$$

Le terme entre parenthèses à gauche de l'équation est dit la variation de la fonction de Gibbs de l'état standard ΔG_T^0 c.à.d.

$$\Delta G_T^0 = \left(e\bar{g}_{E,T}^o + f\bar{g}_{F,T}^o + \dots - a\bar{g}_{A,T}^o - b\bar{g}_{B,T}^o - \dots \right)$$

Où alternativement

$$\Delta G_T^0 = \left(e \bar{g}_{f,E}^o + f \bar{g}_{f,F}^o + \dots - a \bar{g}_{f,A}^o - b \bar{g}_{f,B}^o - \dots \right)_T \tag{4.18}$$

L'argument du logarithme est définie par constante d'équilibre K_P pour la réaction, elle est notée par :

$$K_p = \frac{(P_E/P^0)^e (P_F/P^0)^f .etc.}{(P_A/P^0)^a (P_B/P^0)^b .etc.}$$
(4.19)

De ces définitions de ΔG_T^0 et K_p , la condition d'équilibre chimique à une température et pression constante est donnée par :

$$\Delta G_T^0 = -R_u T ln K_n \tag{4.20}$$

Où bien
$$K_p = \exp{-\left(\Delta G_T^0 / R_u T\right)} \tag{4.21}$$

Si ΔG_T^0 est positive, les réactifs vont être favorisés car lnK_p est négative, ce qui implique que K_p elle-même est inférieure à l'unité c.à.d.

$$(P_E/P^0)^e (P_F/P^0)^f. \, etc. < (P_A/P^0)^a (P_B/P^0)^d. \, etc..$$

Similairement, si ΔG_T^0 est négative la réaction favorise les produits. Une interprétation physique peut être faite si on écrit la définition de ΔG_T^0 en fonction de l'enthalpie et l'entropie :

$$\Delta G_T^0 = \Delta H^0 - T \Delta S^0 \tag{4.22}$$

Qui peut être substituée dans l'équation de K_p .

$$K_p = \exp[-(\Delta H^0/R_u T)\exp(\Delta S^0/R_u)]$$

Pour que K_p soit supérieure à l'unité, ce qui favorise les produits, la variation de l'enthalpie de la réaction, ΔH^0 , doit être négative, c.à.d., la réaction est exothermique et l'énergie du système diminue. Aussi, une variation positive de l'entropie, qui indique un chaos moléculaire plus important, donne des valeurs de $K_p > 1$.

Exemple:

On veut étudier l'effet de la pression sur la réaction d'équilibre $CO + \frac{1}{2}O_2 \leftrightarrow CO_2$ à T = 2000K. Pour cela on prend les pressions P = 1, 3, 5, 8 et 10 atm.

- 1. Ecrire l'expression de la constante d'équilibre,
- 2. Calculer la constante Kp,
- 3. Ecrire les équations qui donnent la composition du mélange si on suppose que le rapport atomique C/O = ½.
- 4. Calculer la composition du mélange pour les pressions P = 1, 3, 5, 8 et 10 atm.

Solution:

1. La constante d'équilibre s'écrit :

$$K_p = \frac{(P_{CO2}/P^0)^1}{(P_{CO}/P^0)^1 (P_{O2}/P^0)^{1/2}}$$

2. La constante d'équilibre peut être calculée par $K_p = \exp[-(\Delta G_T^0/R_u T)]$

Avec
$$\Delta G_T^0 = \left(1\bar{g}_{f,CO2}^o - 1\bar{g}_{f,CO}^o - \frac{1}{2}\bar{g}_{f,O2}^o\right)_{2000K} = -396410 - (-285948) - 0 = -110462 \text{ Kj/Kmole}$$

D'où
$$K_p = \exp[110462/(8.314 * 2000)] = 767.5$$

3. Pour le calcul de la composition du mélange, on doit avoir trois équations car on a trois inconnues à savoir : x_{CO} , x_{CO2} et x_{O2} .

La première équation est

$$x_{CO} + x_{CO2} + x_{O2} = 1 \tag{1}$$

De l'hypothèse C/O = ½, on sait que CO donne une mole de O et de C, CO₂ donne deux moles de O et une de C et finalement O₂ donne deux moles de O. Ecrivant le rapport

$$\frac{atomes\ de\ C}{atomes\ de\ O} = \frac{1}{2} = \frac{N_{CO} + N_{CO2}}{N_{CO} + 2N_{CO2} + 2N_{O2}} = \frac{x_{CO} + x_{CO2}}{x_{CO} + 2x_{CO2} + 2x_{O2}}$$

On obtient

$$\frac{1}{2} x_{CO} - x_{O2} = 0 (2)$$

La troisième est obtenue de la constante d'équilibre

$$K_p = \frac{(P_{CO2}/P^0)^1}{(P_{CO}/P^0)^1(P_{O2}/P^0)^{1/2}} = \frac{x_{CO2}}{x_{CO}x_{O2}^{1/2}P^{1/2}}$$

D'où
$$x_{CO2} - K_p P^{\frac{1}{2}} x_{CO} x_{O2}^{\frac{1}{2}} = 0$$
 (3)

Les équations (1), (2) et (3) donnent la composition du mélange à la température et pressions voulues. C'est un système non linéaire et couplé, dans l'équation (3) on doit éliminer x_{CO} et x_{CO2} pour chercher x_{O2} par une méthode numérique.

De (2) on a $x_{CO} = 2x_{O2}$, le remplacement dans (1) donne $x_{CO2} = 1 - 3x_{O2}$.

Si on remplace dans l'équation (3), on obtient $(1 - 3x_{02}) - 2K_p P^{\frac{1}{2}} x_{02}^{\frac{3}{2}} = 0$, en réarrangeant cela

donne

$$x_{O2} = \left[\frac{1 - 3x_{O2}}{2K_{11}P_{22}^{\frac{1}{2}}} \right]^{2/3}$$

La convergence de cette forme d'écriture est vérifiée pour la méthode des approximations successives. Si on part d'un estimé initial $x_{02}^{(0)} = 0.000$ en écrivant :

$$x_{O2}^{(n+1)} = \left[\frac{1-3x_{O2}^{(n)}}{\frac{1}{2K_nP^{\frac{1}{2}}}}\right]^{2/3}$$
 n =0,1,2,... (n est le numéro de l'itération)

P = 1 atm

Pour n=0
$$x_{02}^{(1)} = 7.405 \ 10^{-3}$$
, n=1 $x_{02}^{(2)} = 7.407 \ 10^{-3}$, n=2 $x_{02}^{(3)} = 7.407 \ 10^{-3}$

Donc
$$x_{O2} = 7.407 \ 10^{-3}$$
, $x_{CO2} = 9.778 \ 10^{-1}$ et $x_{CO} = 1.481 \ 10^{-2}$

P = 3 atm

Pour n=0
$$x_{02}^{(1)} = 5.208 \ 10^{-3}$$
, n=1 $x_{02}^{(2)} = 5.154 \ 10^{-3}$, n=2 $x_{02}^{(3)} = 5.155 \ 10^{-3}$

Donc
$$x_{O2} = 5.155 \ 10^{-3}$$
, $x_{CO2} = 9.845 \ 10^{-1}$ et $x_{CO} = 1.031 \ 10^{-2}$

P = 5 atm

Pour n=0
$$x_{O2}^{(1)} = 4.348 \ 10^{-3}$$
, n=1 $x_{O2}^{(2)} = 4.348 \ 10^{-3}$

Donc
$$x_{O2} = 4.348 \ 10^{-3}$$
, $x_{CO2} = 9.870 \ 10^{-1}$ et $x_{CO} = 8.696 \ 10^{-3}$

P = 8 atm

Pour n=0
$$x_{O2}^{(1)} = 3.759 \ 10^{-3}$$
, n=1 $x_{O2}^{(2)} = 3.731 \ 10^{-3}$, n=2 $x_{O2}^{(3)} = 3.731 \ 10^{-3}$

Donc
$$x_{O2} = 3.731 \ 10^{-3}$$
, $x_{CO2} = 9.888 \ 10^{-1}$ et $x_{CO} = 7.462 \ 10^{-3}$

P = 10 atm

Pour n=0
$$x_{02}^{(1)} = 3.497 \, 10^{-3}$$
, n=1 $x_{02}^{(2)} = 3.472 \, 10^{-3}$, n=2 $x_{02}^{(3)} = 3.472 \, 10^{-3}$

Donc
$$x_{O2} = 3.472 \ 10^{-3}$$
, $x_{CO2} = 9.990 \ 10^{-1}$ et $x_{CO} = 6.944 \ 10^{-3}$

APPENDIX

SELECTED THERMODYNAMIC PROPERTIES OF GASES COMPRISING C-H-O-N SYSTEM

TABLES A.1 TO A.12

Ideal-gas values for standard reference state ($T = 298.15 \,\mathrm{K}, P = 1 \,\mathrm{atm}$) for

$$\bar{c}_p(T), \bar{h}^o(T) - \bar{h}^o_{f, \text{ref}}, \bar{h}^o_f(T), \bar{s}^o(T), \bar{g}^o_f(T)$$
 for CO, CO₂, H₂, H, OH, H₂O, N₂, N, NO, NO₂, O₂, O.

Enthalpy of formation and Gibbs function of formation for compounds are calculated from the elements as

$$\begin{split} \bar{h}_{f,i}^o(T) &= \bar{h}_i^o(T) - \sum_{j \text{ elements}} v_j' \bar{h}_j^o(T) \\ \bar{g}_{f,i}^o(T) &= \bar{g}_i^o(T) - \sum_{j \text{ elements}} v_j' \bar{g}_j^o(T) \\ &= \bar{h}_{f,i}^o(T) - T \bar{s}_i^o(T) - \sum_{j \text{ elements}} v_j' \big[- T \bar{s}_j^o(T) \big]. \end{split}$$

SOURCE: Tables were generated from curvefit coefficients given in Kee, R. J., Rupley, F. M., and Miller, J. A., "The Chemkin Thermodynamic Data Base," Sandia Report, SAND87-8215B, March 1991.

TABLE A.13

Curvefit coefficients for $\bar{c}_p(T)$ for the same gases as above.

SOURCE: ibid.

Table A.1 Carbon monoxide (CO), MW = 28.010, enthalpy of formation @ 298 K (kJ/kmol) = -110,541

T(K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ ext{(kJ/kmol)}$	$ar{h}^o_f(T) \ (ext{kJ/kmol})$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}^o_f(T) \ (ext{kJ/kmol})$
200	28.687	-2,835	-111,308	186.018	-128,532
298	29.072	0	-110,541	197.548	-137,163
300	29.078	54	-110,530	197.728	-137,328
400	29.433	2,979	-110,121	206.141	-146,332
500	29.857	5,943	-110,017	212.752	-155,403
600	30.407	8,955	-110,156	218.242	-164,470
700	31.089	12,029	-110,477	222.979	-173,499
800	31.860	15,176	-110,924	227.180	-182,473
900	32.629	18,401	-111,450	230.978	-191,386
1,000	33.255	21,697	-112,022	234.450	-200,238
1,100	33.725	25,046	-112,619	237.642	-209,030
1,200	34.148	28,440	-113,240	240.595	-217,768
1,300	34.530	31,874	-113,881	243.344	-226,453
1,400	34.872	35,345	-114,543	245.915	-235,087
1,500	35.178	38,847	-115,225	248.332	-243,674
1,600	35.451	42,379	-115,925	250.611	-252,214
1,700	35.694	45,937	-116,644	252.768	-260,711
1,800	35.910	49,517	-117,380	254.814	-269,164
1,900	36.101	53,118	-118,132	256.761	-277,576
2,000	36.271	56,737	-118,902	258.617	-285,948
2,100	36.421	60,371	-119,687	260.391	-294,281
2,100	36.553	64,020	-120,488	262.088	-302,576
	36.670	67,682	-120,488 $-121,305$	263.715	-302,370 $-310,835$
2,300 2,400	36.774	71,354	-121,303 $-122,137$	265.278	-310,055
-	36.867	75,036	-122,137 -122,984	266.781	-327,245
2,500			-122,964 $-123,847$	268.229	-327,243 $-335,399$
2,600	36.950	78,727 82,426	-123,047 $-124,724$	269.625	-343,519
2,700	37.025	•			-343,519 $-351,606$
2,800	37.093	86,132	-125,616	270.973	-351,000 $-359,661$
2,900	37.155	89,844	-126,523	272.275	
3,000	37.213	93,562	-127,446	273.536	-367,684
3,100	37.268	97,287	-128,383	274.757	-375,677
3,200	37.321	101,016	-129,335	275.941	-383,639
3,300	37.372	104,751	-130,303	277.090	-391,571
3,400	37.422	108,490	-131,285	278.207	-399,474
3,500	37.471	112,235	-132,283	279.292	-407,347
3,600	37.521	115,985	-133,295	280.349	-415,192
3,700	37.570	119,739	-134,323	281.377	-423,008
3,800	37.619	123,499	-135,366	282.380	-430,796
3,900	37.667	127,263	-136,424	283.358	-438,557
4,000	37.716	131,032	-137,497	284.312	-446,291
4,100	37.764	134,806	-138,585	285.244	-453,997
4,200	37.810	138,585	-139,687	286.154	-461,677
4,300	37.855	142,368	-140,804	287.045	-469,330
4,400	37.897	146,156	-141,935	287.915	-476,957
4,500	37.936	149,948	-143,079	288.768	-484,558
4,600	37.970	153,743	-144,236	289.602	-492,134
4,700	37.998	157,541	-145,407	290.419	-499,684

Table A.1 (continued)

T(K)	ë _p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298))$ (kJ/kmol)	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T) \ ext{(kJ/kmol)}$
4,800	38.019	161,342	-146,589	291.219	-507,210
4,900	38.031	165,145	-147,783	292.003	-514,710
5,000	38.033	168,948	-148,987	292.771	-522,186

Table A.2 Carbon dioxide (CO₂), MW=44.011, enthalpy of formation @ 298 K (kJ/kmol) = -393,546

T(K)	$ar{c}_p$ (kJ/kmol-K)	$egin{aligned} (ar{\mathit{h}}^o(T) - ar{\mathit{h}}^o_f(298)) \ (\mathrm{kJ/kmol}) \end{aligned}$	$ar{h}^o_f(T) \ ext{(kJ/kmol)}$	$\tilde{s}^o(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (k ${ m J/kmol})$
200	32.387	-3,423	-393,483	199.876	-394,126
298	37.198	0	-393,546	213.736	-394,428
300	37.280	69	-393,547	213.966	-394,433
400	41.276	4,003	-393,617	225.257	-394,718
500	44.569	8,301	-393,712	234.833	-394,983
600	47.313	12,899	-393,844	243.209	-395,226
700	49.617	17,749	-394,013	250.680	-395,443
800	51.550	22,810	-394,213	257.436	-395,635
900	53.136	28,047	-394,433	263.603	-395,799
1,000	54.360	33,425	-394,659	269.268	-395,939
1,100	55.333	38,911	-394,875	274.495	-396,056
1,200	56.205	44,488	-395,083	279.348	-396,155
1,300	56.984	50,149	-395,287	283.878	-396,236
1,400	57.677	55,882	-395,488	288.127	-396,301
1,500	58.292	61,681	-395,691	292.128	-396,352
1,600	58.836	67,538	-395,897	295.908	-396,389
1,700	59.316	73,446	-396,110	299.489	-396,414
1,800	59.738	79,399	-396,332	302.892	-396,425
1,900	60.108	85,392	-396,564	306.132	-396,424
2,000	60.433	91,420	-396,808	309.223	-396,410
-	60.717	97,477	-397,065	312.179	-396,384
2,100 2,200	60.966	103,562	-397,338	315.009	-396,346
2,300	61.185	109,670	-397,626	317.724	-396,294
2,400	61.378	115,798	-397,920 -397,931	320.333	-396,230
,	61.548	121,944	-398,253	322.842	-396,152
2,500 2,600	61.701	128,107	-398,594	325.259	-396,061
2,700	61.839	134,284	-398,952	327.590	-395,95
,	61.965	140,474	-399,329	329.841	-395,840
2,800		146,677	-399,725 -399,725	332.018	-395,708
2,900	62.083 62.194	152,891	-400,140	334.124	-395,766
3,000		159,116	-400,140 -400,573	336.165	-395,403
3,100	62.301	·	-400,373 $-401,025$	338.145	-395,229
3,200	62.406	165,351	-401,023 $-401,495$	340.067	-395,041 -395,041
3,300	62.510	171,597	-401,493 $-401,983$	341.935	-393,04 -394,838
3,400	62.614	177,853	-401,983 -402,489	343.751	-394,630 -394,620
3,500	62.718	184,120	-402,469 -403,013	345.519	-394,020 -394,380
3,600	62.825	190,397	,	347.242	-394,386 -394,14
3,700	62.932	196,685	-403,553	347.242 348.922	-394,14 $-393,87$
3,800	63.041	202,983	-404,110	348.922 350.561	-393,60 -393,60
3,900	63.151	209,293	-404,684	353.161	-393,60. -393,31
4,000	63.261	215,613	-405,273	353.161	-393,31 -393,00
4,100	63.369	221,945	-405,878	353.725 355.253	-393,004 -392,68
4,200	63.474	228,287	-406,499		-392,08. -392,34
4,300	63.575	234,640	-407,135	356.748	-392,349 -391,99
4,400	63.669	241,002	-407,785	358.210	-391,99
4,500	63.753	247,373	-408,451	359.642 361.044	-391,029
4,600	63.825	253,752	-409,132		-391,24 $-390,85$
4,700	63.881	260,138	-409,828	362.417	-390,83

Table A.2 (continued)

T(K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ ext{(kJ/kmol)}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	63.918	266,528	-410,539	363.763	-390,440
4,900	63.932	272,920	-411.267	365.081	-390,440 -390.014
5,000	63.919	279,313	-412,010	366.372	-390,014 $-389,572$

Table A.3 Hydrogen (H₂), MW = 2.016, enthalpy of formation @ 298 K (kJ/kmol) = 0

<i>T</i> (K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298))$ (kJ/kmol)	$ar{h}_f^o(T)$ (kJ/kmol)	\$\overline{s}^o(T)\$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	28.522	-2,818	0	119.137	0
298	28.871	0	0	130.595	0
300	28.877	53	0	130.773	0
400	29.120	2,954	0	139.116	0
500	29.275	5,874	0	145.632	0
600	29.375	8,807	0	150.979	0
700	29.461	11,749	0	155.514	0
800	29.581	14,701	0	159.455	0
900	29.792	17,668	0	162.950	0
1,000	30.160	20,664	0	166.106	0
1,100	30.625	23,704	0	169.003	0
1,200	31.077	26,789	0	171.687	0
1,300	31.516	29,919	0	174.192	0
1,400	31.943	33,092	0	176.543	0
1,500	32.356	36,307	0	178.761	0
1,600	32.758	39,562	0	180.862	0
1,700	33.146	42,858	0	182.860	0
1,800	33.522	46,191	0	184.765	0
1,900	33.885	49,562	0	186.587	0
2,000	34.236	52,968	0	188.334	0
2,100	34.575	56,408	0	190.013	0
2,200	34.901	59,882	0	191.629	0
2,300	35.216	63,388	0	193.187	0
2,400	35.519	66,925	0	194.692	0
2,500	35.811	70,492	0	196.148	0
2,600	36.091	74,087	0	197.558	0
2,700	36.361	77,710	0	198.926	0
2,800	36.621	81,359	0	200.253	0
2,900	36.871	85,033	0	201.542	0
3,000	37.112	88,733	0	202.796	0
3,100	37.343	92,455	0	204.017	0
3,200	37.566	96,201	0	205.206	0
3,300	37.781	99,968	0	206.365	0
3,400	37.989	103,757	0	207.496	0
3,500	38.190	107,566	0	208.600	0
3,600	38.385	111,395	0	209.679	0
3,700	38.574	115,243	0	210.733	0
3,800	38.759	119,109	0	211.764	0
3,900	38.939	122,994	0	212.774	0
4,000	39.116	126,897	0	213.762	0
4,100	39.291	130,817	0	214.730	0
4,200	39.464	134,755	0	215.679	0
4,300	39.636	138,710	0	216.609	0
4,400	39.808	142,682	0	217.522	0
4,500	39.981	146,672	0	218.419	0
4,600	40.156	150,679	0	219.300	0
4,700	40.334	154,703	0	220.165	0

Table A.3 (continued)

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298))$ (kJ/kmol)	$ ilde{ extit{h}}^o_f(T) \ ext{(kJ/kmol)}$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ ilde{g}^o_f(T) \ ext{(kJ/kmol)}$
4,800	40.516	158,746	0	221.016	0
4,900	40.702	162,806	0	221.853	0
5,000	40.895	166,886	0	222.678	0

Table A.4 Hydrogen atom (H), MW = 1.008, enthalpy of formation @ 298 K (kJ/kmol) = 217,977

<i>T</i> (K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ (\mathrm{kJ/kmol})$	$ar{\mathit{h}}^o_f(T) \ (\mathrm{kJ/kmol})$	$\bar{s}^o(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	20.786	-2,040	217,346	106.305	207,999
298	20.786	0	217,977	114.605	203,276
300	20.786	38	217,989	114.733	203,185
400	20.786	2,117	218,617	120.713	198,155
500	20.786	4,196	219,236	125.351	192,968
600	20.786	6,274	219,848	129.351	187,657
700	20.786	8,353	220,456	132.345	182,244
800	20.786	10,431	221,059	135.121	176,744
900	20.786	12,510	221,653	137.569	171,169
1,000	20.786	14,589	222,234	139.759	165,528
1,100	20.786	16,667	222,793	141.740	159,830
1,200	20.786	18,746	223,329	143.549	154,082
1,300	20.786	20,824	223,843	145.213	148,291
1,400	20.786	22,903	224,335	146.753	142,461
1,500	20.786	24,982	224,806	148.187	136,596
1,600	20.786	27,060	225,256	149.528	130,700
1,700	20.786	29,139	225,687	150.789	124,777
1,800	20.786	31,217	226,099	151.977	118,830
1,900	20.786	33,296	226,493	153.101	112,859
2,000	20.786	35,375	226,868	154.167	106,869
2,100	20.786	37,453	227,226	155.181	100,860
2,200	20.786	39,532	227,568	156.148	94,834
2,300	20.786	41,610	227,894	157.072	88,794
2,400	20.786	43,689	228,204	157.956	82,739
2,500	20.786	45,768	228,499	158.805	76,672
2,600	20.786	47,846	228,780	159.620	70,593
2,700	20.786	49,925	229,047	160.405	64,504
2,800	20.786	52,003	229,301	161.161	58,405
2,900	20.786	54,082	229,543	161.890	52,298
3,000	20.786	56,161	229,772	162.595	46,182
3,100	20.786	58,239	229,989	163.276	40,058
3,200	20.786	60,318	230,195	163.936	33,928
3,300	20.786	62,396	230,390	164.576	27,792
3,400	20.786	64,475	230,574	165.196	21,650
3,500	20.786	66,554	230,748	165.799	15,502
3,600	20.786	68,632	230,912	166.954	9,350
3,700	20.786	70,711	231,067	166.954	3,194
3,800	20.786	72,789	231,212	167.508	-2,967
3,900	20.786	74,868	231,348	168.048	-9,132
4,000	20.786	76,947	231,475	168.575	-15,299
4,100	20.786	79,025	231,594	169.088	-21,470
4,200	20.786	81,104	231,704	169.589	-27,644
4,300	20.786	83,182	231,704	170.078	-27,044 $-33,820$
4,400 4,400	20.786	85,261	231,803	170.556	-39,998
4,400 4,500	20.786	87,340	231,897	170.330	-39,996 -46,179
4,500 4,600	20.786	87,340 89,418	231,981	171.480	-52,361
4,700 4,700	20.786	91,497	232,030	171.480	-52,501 -58,545

Table A.4 (continued)

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ ilde{h_f^o}(T) \ ext{(kJ/kmol)}$	\$ o (T) (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	20.786	93,575	232,180	172.364	-64,730
4,900	20.786	95,654	232,228	172.793	-70,916
5,000	20.786	97,733	232,267	173.213	-77,103

Table A.5 Hydroxyl (OH), MW = 17.007, enthalpy of formation @ 298 K (kJ/kmol) = 38,985

T(K)	\bar{c}_p (kJ/kmol-K)	$\begin{array}{c} (\bar{h}^o(T) - \bar{h}^o_f(298)) \\ (\text{kJ/kmol}) \end{array}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T) \ (ext{kJ/kmol})$
200	30.140	-2,948	38,864	171.607	35,808
298	29.932	0	38,985	183.604	34,279
300	29.928	55	38,987	183.789	34,250
400	29.718	3,037	39,030	192.369	32,662
500	29.570	6,001	39,000	198.983	31,072
600	29.527	8,955	38,909	204.369	29,494
700	29.615	11,911	38,770	208.925	27,935
800	29.844	14,883	38,599	212.893	26,399
900	30.208	17,884	38,410	216.428	24,885
1,000	30.682	20,928	38,220	219.635	23,392
1,100	31.186	24,022	38,039	222.583	21,918
1,200	31.662	27,164	37,867	225.317	20,460
1,300	32.114	30,353	37,704	227.869	19,017
1,400	32.540	33,586	37,548	230.265	17,585
1,500	32.943	36,860	37,397	232.524	16,164
1,600	33.323	40,174	37,252	234.662	14,753
1,700	33.682	43,524	37,109	236.693	13,352
1,800	34.019	46,910	36,969	238.628	11,958
1,900	34.337	50,328	36,831	240.476	10,573
2,000	34.635	53,776	36,693	242.245	9,194
2,100	34.915	57,254	36,555	243.942	7,823
2,200	35.178	60,759	36,416	245.572	6,458
2,300	35.425	64,289	36,276	247.141	5,099
2,400	35.656	67,843	36,133	248.654	3,746
2,500	35.872	71,420	35,986	250.114	2,400
2,600	36.074	75,017	35,836	251.525	1,060
2,700	36.263	78,634	35,682	252.890	-275
2,800	36.439	82,269	35,524	254.212	-1,604
2,900	36,604	85,922	35,360	255.493	-2,927
3,000	36.759	89,590	35,191	256.737	-4,245
3,100	36.903	93,273	35,016	257.945	-5,556
3,200	37.039	96,970	34,835	259.118	-6,862
3,300	37.166	100,681	34,648	260.260	-8,162
3,400	37.285	104,403	34,454	261.371	-9,457
3,500	37.398	108,137	34,253	262.454	-10,745
3,600	37.504	111,882	34,046	263.509	-12,028
3,700	37.605	115,638	33,831	264.538	-13,305
3,800	37.701	119,403	33,610	265.542	-14,576
3,900	37.793	123,178	33,381	266.522	-15,841
4,000	37.882	126,962	33,146	267.480	-17,100
4,100	37.968	130,754	32,903	268.417	-18,353
4,200	38.052	134,555	32,654	269.333	-19,600
4,300	38.135	138,365	32,397	270.229	-20,841
4,400	38.217	142,182	32,134	271.107	-22,076
4,500	38.300	146,008	31,864	271.967	-23,306
4,600	38.382	149,842	31,588	272.809	-24,528
1,000	20.302	, ,	-,	273.636	-25,745

Table A.5 (continued)

T(K)	\ddot{c}_p (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ar{h}^o_f(T) \ (ext{kJ/kmol})$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	38.552	157,536	31.017	274.446	-26,956
4,900	38.640	161,395	30,722	275.242	-28,161
5,000	38.732	165,264	30,422	276.024	-29,360

Table A.6 Water (H₂O), MW = 18.016, enthalpy of formation @ 298 K (kJ/kmol) = -241.845; enthalpy of vaporization (kJ/kmol) = 44,010

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ar{h_f^o}(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	32.255	-3,227	-240,838	175.602	-232,779
298	33.448	0	-241,845	188.715	-228,608
300	33.468	62	-241,865	188.922	-228,526
400	34.437	3,458	-242,858	198.686	-223,929
500	35.337	6,947	-243,822	206.467	-219,085
600	36.288	10,528	-244,753	212.992	-214,049
700	37.364	14,209	-245,638	218.665	-208,861
800	38.587	18,005	-246,461	223.733	-203,550
900	39.930	21,930	-247,209	228.354	-198,141
1,000	41.315	25,993	-247,879	232.633	-192,652
1,100	42.638	30,191	-248,475	236.634	-187,100
1,200	43.874	34,518	-249,005	240.397	-181,497
1,300	45.027	38,963	$-249,\!477$	243.955	-175,852
1,400	46.102	43,520	-249,895	247.332	-170,172
1,500	47.103	48,181	-250,267	250.547	-164,464
1,600	48.035	52,939	-250,597	253.617	-158,733
1,700	48.901	57,786	-250,890	256.556	-152,983
1,800	49.705	62,717	-251,151	259.374	-147,216
1,900	50.451	67,725	-251,384	262.081	-141,435
2,000	51.143	72,805	-251,594	264.687	-135,643
2,100	51.784	77,952	-251,783	267.198	-129,841
2,200	52.378	83,160	-251,955	269.621	-124,030
2,300	52.927	88,426	-252,113	271.961	-118,211
2,400	53.435	93,744	-252,261	274.225	-112,386
2,500	53.905	99,112	-252,399	276.416	-106,555
2,600	54.340	104,524	-252,532	278.539	-100,719
2,700	54.742	109,979	-252,659	280.597	-94,878
2,800	55.115	115,472	-252,785	282.595	-89,031
2,900	55.459	121,001	-252,909	284.535	-83,181
3,000	55.779	126,563	-253,034	286.420	-77,326
3,100	56.076	132,156	-253,161	288.254	-71,467
3,200	56.353	137,777	-253,290	290.039	-65,604
3,300	56.610	143,426	-253,423	291.777	-59,737
3,400	56.851	149,099	-253,561	293.471	-53,865
3,500	57.076	154,795	-253,704	295.122	-47,990
3,600	57.288	160,514	-253,852	296.733	-42,110
3,700	57.488	166,252	-254,007	298.305	-36,226
3,800	57.676	172,011	-254,169	299.841	-30,338
3,900	57.856	177,787	-254,338	301.341	-24,446
4,000	58.026	183,582	-254,515	302.808	-18,549
4,100	58.190	189,392	-254,699	304.243	-12,648
4,200	58.346	195,219	-254,892	305.647	-6,742
4,300	58.496	201,061	-255,093	307.022	-831
4,400	58.641	206,918	-255,303	308.368	5,085
4,500	58.781	212,790	-255,522	309.688	11,005
4,600	58.916	218,674	-255,751	310.981	16,930
4,700	59.047	224,573	-255,990	312.250	22,861
4,700	J7.U4/	447,313	233,790	512.250	

Table A.6 (continued)

T(K)	\bar{c}_p (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	59.173	230,484	-256,239	313.494	28,796
4,900	59.295	236,407	-256,501	314.716	34,737
5,000	59.412	242,343	-256,774	315.915	40,684

Table A.7 Nitrogen (N₂), MW = 28.013, enthalpy of formation @ 298 K (kJ/kmol) = 0

T(K)	\ddot{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ (ext{kJ/kmol})$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	28.793	-2,841	0	179.959	0
298	29.071	0	0	191.511	0
300	29.075	54	0	191.691	0
400	29.319	2,973	0	200.088	0
500	29.636	5,920	0	206.662	0
600	30.086	8,905	0	212.103	0
700	30.684	11,942	0	216.784	0
800	31.394	15,046	0	220.927	0
900	32.131	18,222	0	224.667	0
1,000	32.762	21,468	0	228.087	0
1,100	33.258	24,770	0	231.233	0
1,200	33.707	28,118	0	234.146	0
1,300	34.113	31,510	0	236.861	0
1,400	34.477	34,939	0	239.402	0
1,500	34.805	38,404	0	241.792	0
1,600	35.099	41,899	0	244.048	0
1,700	35.361	45,423	0	246.184	0
1,800	35.595	48,971	0	248.212	0
1,900	35.803	52,541	0	250.142	0
2,000	35.988	56,130	0	251.983	0
2,100	36.152	59,738	0	253.743	0
2,100	36.298	63,360	0	255.429	0
2,200	36.428	66,997	o 0	257.045	0
	36.543	70,645	0	258.598	0
2,400	36.645	74,305	0	260.092	0
2,500	36.737	77,974	Ö	261.531	0
2,600 2,700	36.820	81,652	ő	262.919	0
	36.895	85,338	0	264.259	0
2,800	36.964	89,031	0	265.555	0
2,900	37.028	92,730	0	266.810	0
3,000	37.028	96,436	Ö	268.025	0
3,100	37.144	100,148	0	269.203	0
3,200	37.144	103,865	Ö	270.347	0
3,300	37.198	107,587	0	271.458	0
3,400		111,315	Ö	272.539	0
3,500	37.302 37.352	115,048	ő	273.590	0
3,600		118,786	ŏ	274.614	0
3,700	37.402	122,528	ő	275.612	0
3,800	37.452	126,276	ő	276.586	0
3,900	37.501 37.549	130,028	ő	277.536	0
4,000		•	0	278.464	0
4,100	37.597 37.643	133,786 137,548	0	279.370	0
4,200	37.643		0	280.257	0
4,300	37.688	141,314 145,085	0	281.123	ő
4,400	37.730	148,860	0	281.972	0
4,500	37.768		0	282.802	0
4,600	37.803	152,639 156,420	0	283.616	0

Table A.7 (continued)

<i>T</i> (K)	\bar{c}_{ρ} (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	37.854	160,205	0	284.412	0
4,900	37.868	163,991	0	285.193	0
5,000	37.873	167,778	Ö	285.958	0

Table A.8 Nitrogen atom (N), MW = 14.007, enthalpy of formation @ 298 K (kJ/kmol) = 472,629

<i>T</i> (K)	\vec{c}_p (kJ/kmol-K)	$(ar{\mathit{h}}^o(T) - ar{\mathit{h}}^o_f(298)) \ (\mathrm{kJ/kmol})$	$ar{h}^o_f(T) \ (ext{kJ/kmol})$	$\bar{s}^o(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	20.790	-2,040	472,008	144.889	461,026
298	20.786	0	472,629	153.189	455,504
300	20.786	38	472,640	153.317	455,398
400	20.786	2,117	473,258	159.297	449,557
500	20.786	4,196	473,864	163.935	443,562
600	20.786	6,274	474,450	167.725	437,446
700	20.786	8,353	475,010	170.929	431,234
800	20.786	10,431	475,537	173.705	424,944
900	20.786	12,510	476,027	176.153	418,590
1,000	20.786	14,589	476,483	178.343	412,183
1,100	20.792	16,668	476,911	180.325	405,732
1,200	20.795	18,747	477,316	182.134	399,243
1,300	20.795	20,826	477,700	183.798	392,721
1,400	20.793	22,906	478,064	185.339	386,171
1,500	20.793	24,985	478,411	186.774	379,595
1,600	20.786	27,064	478,742	188.115	372,996
1,700	20.783	29,142	479,059	189.375	366,377
1,800	20.779	31,220	479,363	190.563	359,740
1,900	20.777	33,298	479,656	191.687	353,086
	20.776	35,376	479,939	192.752	346,417
2,000	20.778	37,453	480,213	193.766	339,735
2,100	20.778	39,531	480,479	194.733	333,039
2,200	20.783	41,610	480,740	195.657	326,331
2,300	20.802	43,690	480,995	196.542	319,612
2,400	20.802	45,771	481,246	197.391	312,883
2,500	20.838	47,853	481,494	198.208	306,143
2,600	20.864	49,938	481,740	198.995	299,394
2,700	20.895	52,026	481,985	199.754	292,636
2,800	20.893	54,118	482,230	200.488	285,870
2,900	20.931	56,213	482,476	201.199	279,094
3,000	20.974	58,313	482,723	201.887	272,31
3,100	21.024	60,418	482,972	202.555	265,519
3,200	21.143	62,529	483,224	203.205	258,720
3,300	21.143	64,647	483,481	203.837	251,913
3,400	21.214	66,772	483,742	204.453	245,099
3,500	21.292	68,905	484,009	205.054	238,27
3,600	21.472	71,048	484,283	205.641	231,44
3,700		73,200	484,564	206.215	224,610
3,800	21.575 21.686	75,363	484,853	206.777	217,76
3,900	21.805	77,537	485,151	207.328	210,91
4,000	21.805	77,337 79,724	485,459	207.868	204,05
4,100		81,924	485,779	208.398	197,18
4,200	22.071	81,924 84,139	486,110	208.919	190,31
4,300	22.217	86,368	486,453	209.431	183,42
4,400	22.372	,	486,811	209.936	176,53
4,500 4,600	22.536 22.709	88,613 90,875	480,811	210.433	169,63
	77 /09	70.073	70/,104	210.733	.07,03

Table A.8 (continued)

T(K)	\bar{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298))$ (kJ/kmol)	$ ilde{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	23.082	95,454	487,979	211.407	155,814
4,900	23.282	97,772	488,405	211.885	148,890
5,000	23.491	100,111	488,850	212.358	141,956

Table A.9 Nitric oxide (NO), MW = 30.006, enthalpy of formation @ 298 K (kJ/kmol) = 90,297

<i>T</i> (K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ (ext{kJ/kmol})$	$ar{h_f^o}(T) \ ext{(kJ/kmol)}$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T) \ ext{(kJ/kmol)}$
200	29.374	-2,901	90,234	198.856	87,811
298	29.728	0	90,297	210.652	86,607
300	29.735	55	90,298	210.836	86,584
400	30.103	3,046	90,341	219.439	85,340
500	30.570	6,079	90,367	226.204	84,086
600	31.174	9,165	90,382	231.829	82,828
700	31.908	12,318	90,393	236.688	81,568
800	32.715	15,549	90,405	241.001	80,307
900	33.489	18,860	90,421	244.900	79,043
1,000	34.076	22,241	90,443	248.462	77,778
1,100	34.483	25,669	90,465	251.729	76,510
1,200	34.850	29,136	90,486	254.745	75,241
1,300	35.180	32,638	90,505	257.548	73,970
1,400	35.474	36,171	90,520	260.166	72,697
1,500	35.737	39,732	90,532	262.623	71,423
1,600	35.972	43,317	90,538	264.937	70,149
1,700	36.180	46,925	90,539	267.124	68,875
1,800	36.364	50,552	90,534	269.197	67,601
1,900	36.527	54,197	90,523	271.168	66,327
2,000	36.671	57,857	90,505	273.045	65,054
2,100	36.797	61,531	90,479	274.838	63,782
2,200	36.909	65,216	90,447	276.552	62,511
2,300	37.008	68,912	90,406	278.195	61,243
2,400	37.095	72,617	90,358	279.772	59,976
2,500	37.173	76,331	90,303	281.288	58,711
2,600	37.242	80,052	90,239	282.747	57,448
2,700	37.305	83,779	90,168	284.154	56,188
2,800	37.362	87,513	90,089	285.512	54,931
2,900	37.415	91,251	90,003	286.824	53,677
3,000	37.464	94,995	89,909	288.093	52,426
3,100	37.511	98,744	89,809	289.322	51,178
3,200	37.556	102,498	89,701	290.514	49,934
3,300	37.600	106,255	89,586	291.670	48,693
3,400	37.643	110,018	89,465	292.793	47,456
3,500	37.686	113,784	89,337	293.885	46,222
3,600	37.729	117,555	89,203	294.947	44,992
3,700	37.771	121,330	89,063	295.981	43,766
3,800	37.815	125,109	88,918	296.989	42,543
3,900	37.858	128,893	88,767	297.972	41,325
4,000	37.900	132,680	88,611	298.931	40,110
4,100	37.943	136,473	88,449	299.867	38,900
4,200	37.984	140,269	88,283	300.782	37,693
4,300	38.023	144,069	88,112	301.677	36,491
4,400	38.060	147,873	87,936	302.551	35,292
4,500	38.093	151,681	87,755	303.407	34,098
4,600	38.122	155,492	87,569	304.244	32,908
1,000	38.146	159,305	87,379	305.064	31,721

Table A.9 (continued)

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$(ilde{h}^o(T) - ilde{h}^o_f(298))$ $(ext{kJ/kmol})$	$ar{h}^o_f(T)$ (kJ/kmol)	$\tilde{s}^{o}(T)$ (kJ/kmol-K)	$ ilde{g}^o_f(T)$ (kJ/kmol)
4,800	38.162	163,121	87.184	305.868	20.520
4,900	38.171	166,938	86,984	306.655	30,539 29,361
5,000	38.170	170,755	86,779	307.426	28,187

Table A.10 Nitrogen dioxide (NO₂), MW = 46.006, enthalpy of formation @ 298 K (kJ/kmol) = 33,098

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$(ar{\mathit{h}}^o(\mathit{T}) - ar{\mathit{h}}^o_\mathit{f}(298)) \ (\mathrm{kJ/kmol})$	$ar{h}_f^o(T) \ (ext{kJ/kmol})$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	32.936	-3,432	33,961	226.016	45,453
298	36.881	0	33,098	239.925	51,291
300	36.949	68	33,085	240.153	51,403
400	40.331	3,937	32,521	251.259	57,602
500	43.227	8,118	32,173	260.578	63,916
600	45.737	12,569	31,974	268.686	70,285
700	47.913	17,255	31,885	275.904	76,679
800	49.762	22,141	31,880	282.427	83,079
900	51.243	27,195	31,938	288.377	89,476
1,000	52.271	32,375	32,035	293.834	95,864
1,100	52.989	37,638	32,146	298.850	102,242
1,200	53.625	42,970	32,267	303.489	108,609
1,300	54.186	48,361	32,392	307.804	114,966
1,400	54.679	53,805	32,519	311.838	121,313
1,500	55.109	59,295	32,643	315.625	127,651
1,600	55.483	64,825	32,762	319.194	133,981
1,700	55.805	70,390	32,873	322.568	140,303
1,800	56.082	75,984	32,973	325.765	146,620
1,900	56.318	81,605	33,061	328.804	152,931
2,000	56.517	87,247	33,134	331.698	159,238
2,100	56.685	92,907	33,192	334.460	165,542
2,200	56.826	98,583	32,233	337.100	171,843
2,300	56.943	104,271	33,256	339.629	178,143
2,400	57.040	109,971	33,262	342.054	184,442
2,500	57.121	115,679	33,248	344.384	190,742
2,600	57.188	121,394	33,216	346.626	197,042
2,700	57.244	127,116	33,165	348.785	203,344
2,800	57.291	132,843	33,095	350.868	209,648
2,900	57.333	138,574	33,007	352.879	215,955
3,000	57.371	144,309	32,900	354.824	222,265
3,100	57.406	150,048	32,776	356.705	228,579
3,200	57.440	155,791	32,634	358.529	234,898
3,300	57.474	161,536	32,476	360.297	241,221
3,400	57.509	167,285	32,302	362.013	247,549
3,500	57.546	173,038	32,113	363.680	253,883
3,600	57.584	178,795	31,908	365.302	260,222
3,700	57.624	184,555	31,689	366.880	266,567
3,800	57.665	190,319	31,456	368.418	272,918
3,900	57.708	196,088	31,210	369.916	279,270
4,000	57.750	201,861	30,951	371.378	285,639
4,000	57.792	207,638	30,678	372.804	292,010
4,100	57.831	213,419	30,393	374.197	298,38
4,200	57.866	219,204	30,095	375.559	304,77
4,400	57.895	224,992	29,783	376.889	311,16
	57.895 57.915	230,783	29,457	378.190	317,562
4,500	57.915 57.925	236,575	29,117	379.464	323,96
4,600	57.923 57.922	242,367	28,761	380.709	330,38
4,700	31.744	242,307	20,731	20037	

Table A.10 (continued)

T(K)	\bar{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298))$ (kJ/kmol)	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	57.902	248,159	28,389	381.929	336,803
4,900	57.862	253,947	27,998	383.122	343,232
5,000	57.798	259,730	27,586	384.290	349,670

Table A.11 Oxygen (O_2) , MW = 31.999, enthalpy of formation @ 298 K (kJ/kmol) = 0

<i>T</i> (K)	$ar{c}_p$ (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ ext{(kJ/kmol)}$	$ar{h}_f^o(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
200	28.473	-2,836	0	193.518	0
298	29.315	0	0	205.043	0
300	29.331	54	0	205.224	0
400	30.210	3,031	0	213.782	0
500	31.114	6,097	0	220.620	0
600	32.030	9,254	0	226.374	0
700	32.927	12,503	0	231.379	0
800	33.757	15,838	0	235.831	0
900	34.454	19,250	0	239.849	0
1,000	34.936	22,721	0	243.507	0
1,100	35.270	26,232	0	246.852	0
1,200	35.593	29,775	0	249.935	0
1,300	35.903	33,350	0	252.796	0
1,400	36.202	36,955	0	255.468	0
1,500	36.490	40,590	0	257.976	0
1,600	36.768	44,253	0	260.339	0
1,700	37.036	47,943	0	262.577	0
1,800	37.296	51,660	0	264.701	0
1,900	37.546	55,402	0	266.724	0
2,000	37.788	59,169	0	268.656	0
2,100	38.023	62,959	0	270.506	0
2,200	38.250	66,773	0	272.280	0
2,300	38.470	70,609	0	273.985	0
2,400	38.684	74,467	0	275.627	0
2,500	38.891	78,346	0	277.210	0
2,600	39.093	82,245	0	278.739	0
2,700	39.289	86,164	0	280.218	0
2,800	39.480	90,103	0	281.651	0
2,900	39.665	94,060	0	283.039	0
3,000	39.846	98,036	0	284.387	0
3,100	40.023	102,029	0	285.697	0
3,200	40.195	106,040	0	286.970	0
3,300	40.362	110,068	0	288.209	0
3,400	40.526	114,112	0	289.417	0
3,500	40.686	118,173	0	290.594	0
3,600	40.842	122,249	0	291.742	0
3,700	40.994	126,341	0	292.863	0
3,800	41.143	130,448	0	293.959	0
3,900	41.287	134,570	0	295.029	0
4,000	41.429	138,705	0	296.076	0
4,100	41.566	142,855	0	297.101	0
4,200	41.700	147,019	0	298.104	0
4,300	41.830	151,195	0	299.087	0
4,400	41.957	155,384	0	300.050	0
4,500	42.079	159,586	0	300.994	0
4,600	42.197	163,800	0	301.921	0
4,700	42.312	168,026	0	302.829	0

Table A.11 (continued)

<i>T</i> (K)	\bar{c}_{p} (kJ/kmol-K)	$\begin{array}{c} (\bar{h}^o(T) - \bar{h}^o_f(298)) \\ (\text{kJ/kmol}) \end{array}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\tilde{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}_f^o(T)$ (kJ/kmol)
4,800	42.421	172,262	0	303.721	0
4,900	42.527	176,510	o	304.597	0
5,000	42.627	180,767	0	305.457	ő

Table A.12 Oxygen atom (O), MW = 16.000, enthalpy of formation @ 298 K (kJ/kmol) = 249,197

<i>T</i> (K)	\bar{c}_p (kJ/kmol-K)	$(ar{h}^o(T) - ar{h}^o_f(298)) \ (ext{kJ/kmol})$	$ar{h}^o_f(T) \ (ext{kJ/kmol})$	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ar{g}^o_f(T) \ ext{(kJ/kmol)}$
200	22.477	-2,176	248,439	152.085	237,374
298	21.899	0	249,197	160.945	231,778
300	21.890	41	249,211	161.080	231,670
400	21.500	2,209	249,890	167.320	225,719
500	21.256	4,345	250,494	172.089	219,605
600	21.113	6,463	251,033	175.951	213,375
700	21.033	8,570	251,516	179.199	207,060
800	20.986	10,671	251,949	182.004	200,679
900	20.952	12,768	252,340	184.474	194,246
1,000	20.915	14,861	252,698	186.679	187,772
1,100	20.898	16,952	253,033	188.672	181,263
1,200	20.882	19,041	253,350	190.490	174,724
1,300	20.867	21,128	253,650	192.160	168,159
1,400	20.854	23,214	253,934	193.706	161,572
1,500	20.843	25,299	254,201	195.145	154,966
1,600	20.834	27,383	254,454	196.490	148,342
1,700	20.827	29,466	254,692	197.753	141,702
1,800	20.827	31,548	254,916	198.943	135,049
	20.822	33,630	255,127	200.069	128,384
1,900	20.820	35,712	255,325	201.136	121,709
2,000	20.819	37,794	255,512	202.152	115,023
2,100	20.825	39,877	255,687	203.121	108,329
2,200 2,300	20.823	41,959	255,852	204.047	101,627
-	20.840	44,043	256,007	204.933	94,918
2,400	20.851	46,127	256,152	205.784	88,203
2,500	20.865	48,213	256,288	206.602	81,483
2,600	20.881	50,300	256,416	207.390	74,757
2,700	20.899	52,389	256,535	208.150	68,027
2,800	20.920	54,480	256,648	208.884	61,292
2,900 3,000	20.920	56,574	256,753	209.593	54,554
,	20.944	58,669	256,852	210.280	47,812
3,100	20.998	60,768	256,945	210.947	41,068
3,200	21.028	62,869	257,032	211.593	34,320
3,300	21.028	64,973	257,114	212.221	27,570
3,400 3,500	21.095	67,081	257,192	212.832	20,818
3,600	21.132	69,192	257,265	213.427	14,063
3,700	21.132	71,308	257,334	214.007	7,307
3,800	21.212	73,427	257,400	214.572	548
	21.254	75,550	257,462	215.123	-6,212
3,900 4,000	21.299	77,678	257,522	215.662	-12,97
-	21.345	79,810	257,579	216.189	-19,73
4,100	21.343	81,947	257,635	216.703	-26,50
4,200	21.392	84,088	257,688	217.207	-33,26
4,300	21.441	86,235	257,740	217.701	-40,03
4,400	21.541	88,386	257,790	218.184	-46,80
4,500 4,600	21.541	90,543	257,790	218.658	-53,57
	Z1.393	7U,J4J	437,040	210.000	22,21

Table A.12 (continued)

T(K)	\bar{c}_p (kJ/kmol-K)	$\frac{(\bar{h}^o(T) - \bar{h}^o_f(298))}{(\text{kJ/kmol})}$	$ar{h}^o_f(T)$ (kJ/kmol)	$\bar{s}^{o}(T)$ (kJ/kmol-K)	$ ilde{g}^o_f(T)$ (kJ/kmol)
4,800	21.699	94,872	257,938	210.500	
4,900	21.752	97,045	257,936	219.580 220.028	-67,113
5,000	21.805	99,223	258,036	220.468	-73,886 -80,659

 Table A.13
 Curvefit coefficients for thermodynamic properties (C-H-O-N system)

Species	T(K)	ā,	a ₂	43	a ₄	<i>a</i> ₅	a_6	a ₇
00	-	1,000–5,000 0.03025078E+02	0.14426885E-02 0.15119409E-02	-0.05630827E-05 -0.03881755E-04	0.10185813E-09 0.05581944E-07	-0.06910951E-13 -0.02474951E-10	-0.14268350E+05 -0.14310539E+05	0.06108217E+02 0.04848897E+02
CO ₂	1,000-5,000	300-1,000 0.04453623E+02 300-1,000 0.0275724E+02	0.03140168E-01 0.09922072E-01	-0.12784105E-05 -0.10409113E-04	0.02393996E-08 0.06866686E-07	-0.16690333E-13 -0.02117280E-10	-0.04896696E+06 -0.04837314E+06	-0.09553959E+01 0.10188488E+02
H_2	1,000–5,000	300-1,000 0.02991423E+02 300-1 000 0.03298124E+02	0.07000644E-02 0.08249441E-02	-0.05633828E-06 -0.08143015E-05	-0.09231578E-10 -0.09475434E-09	0.15827519E-14 0.04134872E-11	-0.08350340E+04 -0.10125209E+04	-0.13551101E+01 -0.03294094E+02
Н	1,000–5,000	1,000-5,000 0.02500000E+02 300-1,000 0.02500000E+02	0.00000000E+00 0.00000000E+00	0.00000000E+00 0.00000000E+00	0.00000000E+00 0.00000000E+00	0.00000000E+00 0.00000000E+00	0.02547162E+06 0.02547162E+06	-0.04601176E+01 -0.04601176E+01
НО	1,000-5,000	300-1,000 0.0383730E+02	0.10139743E-02 0.01850910E-02	-0.02276877E-05 -0.16761646E-05	0.02174683E-09 0.02387202E-07	-0.05126305E-14 -0.08431442E-11	0.03886888E+05 0.03606781E+05	0.05595712E+02 0.13588605E+01
H_2O	1,000-5,000	1,000–5,000 0.02672145E+02 300–1,000 0.03386842E+02	0.03056293E-01 0.03474982E-01	-0.08730260E-05 -0.06354696E-04	0.12009964E-09 0.06968581E07	-0.06391618E-13 -0.02506588E-10	-0.02989921E+06 -0.03020811E+06	0.06862817E+02 0.02590232E+02
$\overset{5}{Z}$	1,000-5,000	1,000-5,000 0.02926640E+02 300-1,000 0.03298677E+02	0.14879768E-02 0.14082404E-02	-0.05684760E-05 -0.03963222E-04	0.10097038E-09 0.05641515E-07	-0.06753351E-13 -0.02444854E-10	-0.09227977E+04 -0.10208999E+04	0.05980528E+02 0.03950372E+02
Z	1,000–5,000	1,000-5,000 0.02450268E+02 300-1,000 0.02503071E+02	0.10661458E-03 -0.02180018E-03	-0.07465337E-06 0.05420529E-06	0.01879652E-09 -0.05647560E-09	-0.10259839E-14 0.02099904E-12	0.05611604E+06 0.05609890E+06	0.04448758E+02 0.04167566E+02
NO NO	1,000–5,000	1,000-5,000 0.03245435E+02 300-1,000 0.03376541E+02	0.12691383E-02 0.12530634E-02	-0.05015890E-05 -0.03302750E-04	0.09169283E-09 0.05217810E-07	-0.06275419E-13 -0.02446262E-10	0.09800840E+05 0.09817961E+05	0.06417293E+02 0.05829590E+02
NO2	1,000–5,000 300–1,000	1,000-5,000 0.04682859E+02 300-1,000 0.02670600E+02	0.02462429E01 0.07838500E01	-0.10422585E-05 -0.08063864E-04	0.01976902E-08 0.06161714E-07	-0.13917168E-13 -0.02320150E-10	0.02261292E+05 0.02896290E+05	0.09885985E+01 0.11612071E+02

Table A.13 (continued)

T(K) a1 a2 a3 a4 a5 a6 .000-5,000 0.03697578E+02 0.06135197E-02 -0.12588420E-06 0.0175281E-09 -0.11364354E-14 -0.12339301E+04 300-1,000 0.03212936E+02 0.11274864E-02 -0.05756150E-05 0.13138773E-08 -0.08768554E-11 -0.10339301E+04 300-1,000 0.02542059E+02 -0.03102803E-07 0.04551067E-10 -0.04368051E-14 0.02233080E+06 300-1,000 0.02946428E+02 -0.16381665E-02 0.02421031E-04 -0.16028431E-08 0.03890696E-11 0.02914764E+06									
0.06135197E-02 -0.12588420E-06 0.01775281E-09 -0.11364354E-14 -0.12339301E+04 0.11274864E-02 -0.05756150E-05 0.13138773E-08 -0.08768554E-11 -0.10052490E+04 -0.02755061E-03 -0.03102803E-07 0.04551067E-10 -0.04368051E-14 0.02923080E+06 -0.16381665E-02 0.02421031E-04 -0.16028431E-08 0.03890696E-11 0.02914764E+06	Species	<i>T</i> (K)	a_1	<i>a</i> ₂	a_3	a_4	as	a_6	a
-0.02755061E-03 -0.03102803E-07 0.04551067E-10 -0.04368051E-14 -0.16381665E-02 0.02421031E-04 -0.16028431E-08 0.03890696E-11	02	1,000-5,000 300-1,000		0.06135197E-02 0.11274864E-02	-0.12588420E-06 -0.05756150E-05		-0.11364354E-14 -0.08768554E-11	-0.12339301E+04 -0.10052490E+04	0.03189165E+02 0.06034737E+02
	0	1,000–5,000 300–1,000	0.02542059E + 02 0.02946428E + 02	-0.02755061E-03 -0.16381665E-02	-0.03102803E-07 0.02421031E-04	1	-0.04368051E-14 0.03890696E-11	0.02923080E+06 0.02914764E+06	0.04920308E+02 0.02963995E+02

SOURCE: Kee, R. J., Rupley, F. M., and Miller, J. A., "The Chemkin Thermodynamic Data Base," Sandia Report, SAND87-8215B, reprinted March 1991.

APPENDIX

B

FUEL PROPERTIES

Table B.1 Selected properties of hydrocarbon fuels: enthalpy of formation,^a Gibbs function of formation,^a entropy,^a and higher and lower heating values all at 298.15 K and 1 atm; boiling points^b and latent heat of vaporization^c at 1 atm; constant-pressure adiabatic flame temperature at 1 atm;^d liquid density^c

Formula	Fuel	MW (kg/kmol)	$ar{h}_f^o$ (kJ/kmol)	\tilde{g}_f^o (kJ/kmol) (l	ε̄ο (kJ/kmol-K)	HHV [†] (kJ/kg)	LHV† (kJ/kg)	Boiling pt. (°C)	h _{fg} (kJ/kg)	T_{ad}^{\ddagger} (K)	ρ* _{liq} (kg/m³)
CH4	Methane	16.043	-74,831	-50,794	186.188	55,528	50,016	-164	509	2,226	300
C_2H_2	Acetylene	26.038	226,748	209,200	200.819	49,923	48,225	-84	ı	2 539	-
C_2H_4	Ethene	28.054	52,283	68,124	219.827	50,313	47,161	-103.7	1	2,369	-
C_2H_6	Ethane	30.069	-84,667	-32,886	229.492	51,901	47,489	9.88-	488	2,259	370
C_3H_6	Propene	42.080	20,414	62,718	266.939	48,936	45.784	47.4	437	2334	514
C_3H_g	Propane	44.096	-103,847	-23,489	269.910	50,368	46,357	-42.1	425	2,267	200
C_4H_8	1-Butene	56.107	1,172	72,036	307.440	48,471	45,319	-63	391	2 322	505
C_4H_{10}	n-Butane	58.123	-124,733	-15,707	310.034	49,546	45,742	-0.5	386	2,270	579
C_5H_{10}	1-Pentene	70.134	-20,920	78,605	347.607	48,152	45,000	30	358	2.314	149
C_5H_{12}	n-Pentane	72.150	-146,440	-8,201	348.402	49,032	45,355	36.1	358	2,272	626
C_6H_6	Benzene	78.113	82,927	129,658	269.199	42,277	40,579	80.1	393	2,342	879
C_6H_{12}	1-Hexene	84.161	-41,673	87,027	385.974	47,955	44,803	63.4	335	2,308	673
C_6H_{14}	n-Hexane	86.177	-167,193	209	386.811	48,696	45,105	69	335	2,273	659
C_7H_{14}	1-Heptene	98.188	-62,132	95,563	424.383	47,817	44,665	93.6	I	2.305	
C_7H_{16}	n-Heptane	100.203	-187,820	8,745	425.262	48,456	44,926	98.4	316	2,274	684
C_8H_{16}	1-Octene	112.214	-82,927	104,140	462.792	47,712	44,560	121.3		2.302	ļ
C_8H_{18}	n-Octane	114.230	-208,447	17,322	463.671	48,275	44,791	125.7	300	2,275	703
C_9H_{18}	1-Nonene	126.241	-103,512	112,717	501.243	47,631	44,478	1		2,300	1
$\mathrm{C_9H_{20}}$	<i>n</i> -Nonane	128.257	-229,032	25,857	502.080	48,134	44,686	150.8	295	2,276	718
$\mathrm{C}_{10}\mathrm{H}_{20}$	1-Decene	140.268	-124,139	121,294	539.652	47,565	44,413	170.6	ļ	2.298	I
$C_{10}H_{22}$	n-Decane	142.284	-249,659	34,434	540.531	48,020	44,602	174.1	277	2,277	730
$C_{11}H_{22}$	1-Undecene	154.295	-144,766	129,830	578.061	47,512	44,360	-	I	2,296	ļ
$C_{11}H_{24}$	n-Undecane	156.311	-270,286	43,012	578.940	47,926	44,532	195.9	265	2,277	740

(continued) Table B.1

		МИ	1	96°0	o is	ннит	LHV†	Boiling pt.	hfg	T_{g}^{+}	P.*
Formula	Fuel	(kg/kmol)	(kJ/kmol)	(kJ/kmol)	(kJ/kmol-K)	(kJ/kg)	(kJ/kg)	(၁)	(kJ/kg)	(K)	(Kg/m)
C ₁₂ H ₂₄	1-Dodecene	168.322	-165,352	138,407	616.471	47,468	44,316	213.4	}	2,295	6
$C_{12}H_{26}$	n-Dodecane	170.337	-292,162	1	1	47,841	44,467	216.3	967	7.777	/49

† Based on gaseous fuel.

 ‡ For stoichiometric combustion with air (79 percent N2, 21 percent O2). • For liquids at 20°C or for gases at the boiling point of the liquefied gas.

SOURCES:

*Rossini, F. D., et al., Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Carnegie Press, Pittsburgh, PA, 1953.

^bWeast, R. C. (ed.), Handbook of Chemistry and Physics, 56th Ed., CRC Press, Cleveland, OH, 1976. ^cObert, E. F., Internal Combustion Engines and Air Pollution, Harper & Row, New York, 1973.

^dCalculated using HPFLAME (Appendix F).

Curvefit coefficients for fuel specific heat and enthalpy" for reference state of zero enthalpy of the elements at 298.15 K, 1 atm Table B.2

$$\begin{split} \bar{c}_{\rho}\left(kJ/kmol\cdot K\right) &= 4.184(\alpha_1+\alpha_2\theta+\alpha_3\theta^2+\alpha_4\theta^3+\alpha_5\theta^{-2}),\\ \bar{h}^{\tilde{o}}\left(kJ/kmol\right) &= 4184\left(\alpha_1\theta+\alpha_2\theta^2/2+\alpha_3\theta^3/3+\alpha_4\theta^4/4-\alpha_5\theta^{-1}+\alpha_6\right),\\ \text{where } \theta \equiv T\left(K\right)/1000 \end{split}$$

Formula	Fuel	MW	a_1	a_2	a 3	a 4	<i>a</i> 5	a_6	<i>a</i> ⁸ _p
CH4	Methane	16.043	-0.29149	26.327	-10.610	1.5656	0.16573	-18.331	4.300
C_3H_8	Propane	44.096	-1.4867	74.339	-39.065	8.0543	0.01219	-27.313	8.852
C6H14	Hexane	86.177	-20.777	210.48	-164.125	52.832	0.56635	-39.836	15.611
$^{2}_{8}$ H $_{18}$	Isooctane	114.230	-0.55313		-97.787	20.402	-0.03095	-60.751	20.232
CH ₃ OH	Methanol	32.040	-2.7059		-27.501	7.2193	0.20299	-48.288	5.3375
² 2H50H	Ethanol	46.07	066.9	39.741	-11.926	0	0	-60.214	7.6135
28.26H15.5 27.76H13.1	$C_{8.26}H_{15.5}$ Gasoline $C_{7.76}H_{13.1}$	114.8 106.4	-24.078 -22.501	256.63 227.99	-201.68 -177.26	64.750 56.048	0.5808 0.4845	-27.562 -17.578	17.792
C _{10.8} H _{18.7} Diesel	Diesel	148.6	-9.1063	246.97	-143.74	32.329	0.0518	-50.128	23.514

SOURCE: From Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988, by permission of McGraw-Hill, Inc. To obtain 0 K reference state for enthalpy, add a₈ to a₆.

 Table B.3
 Curvefit coefficients for fuel vapor thermal conductivity, viscosity, and specific heat^a

	a
Γ ⁵ + α ₇ Γ ⁶	as
$_{4}$ T 3 + a_{5} T 4 + a_{6}	44
$ \frac{k \left(W/m - K \right)}{\mu \left(N-s/m^2 \right) \cdot 10^6} \right\} = a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4 + a_6 T^5 + a_7 T^6 $ $ c_p \left(\frac{J/kg - K}{s} \right) $	43
$(X_1, Y_2) \cdot 10^6 = $	a ₂
$k (W/m-K) \\ \mu (N-s/m^2) \\ c_{\rho} (J/kg-K)$, a
	onertv

Formula	Filel	T-range (K)	Property	<i>a</i> 1	a ₂	43	a ₄	a _S	46	7.0
CH4			1	-1.34014990E-2 2.96826700E-1 See Table B.2	3.66307060E-4 3.71120100E-2	-1.82248608E-6 1.21829800E-5	5.93987998E-9 -7.02426000E-8	-9.14055050E-12 7.54326900E-11	-6.78968890E-15 -2.72371660E-14	-1.95048736E-18 0
C3H8	Propane	200–500 270–600	, ** # ?,	-1.07682209E-2 -3.54371100E-1 See Table B.2	8.38590325E-5 3.08009600E-2	4.22059864E-8 -6.99723000E-6	0 0	0 0	0 0	0
C ₆ H ₁₄	n-Hexane	150-1,000 270-900	, * # °	1.28775700E-3 1.54541200E+0 See Table B.2	-2.00499443E-5 1.15080900E-2	2.37858831E-7 2.72216500E-5	-1.60944555E-10 -3.26900000E8	7.71027290E–14 1.24545900E–11	0 0	0 0
C_7H_{16}	n-Heptane 250–1,000 270–580 300–755 755–1,365	250-1,000 270-580 300-755 755-1,365	· * # ° °	-4.60614700E-2 1.54009700E+0 9.4626000E+1 -7.40308000E+2	5.95652224E-4 1.09515700E-2 5.86099700E+0 1.08935370E+1	-2.98893153E-6 1.80066400E-5 -1.98231320E-3 -1.26512400E-2	8.44612876E-9 -1.36379000E-8 -6.88699300E-8 9.84376300E-6	-1.22927E-11 0 -1.93795260E-10 -4.32282960E-9	9.0127E-15 0 0 7.86366500E-13	-2.62961E-18 0 0 0
C ₈ H ₁₈	n-Octane	250–500 300–650 275–755 755–1,365	ય ત જ જ	-4.01391940E-3 8.32435400E-1 2.14419800E+2 2.43596860E+3	3.38796092E-5 1.40045000E-2 5.35690500E+0 -4.46819470E+0	8.19291819E-8 8.79376500E-6 -1.17497000E-3 -1.66843290E-2	0 -6.84030000E-9 -6.99115500E-7 -1.78856050E-5	0 0 0 8.64282020E-9	0 0 0 -1.61426500E-12	0000
C ₁₀ H ₂₂	n-Decane	250–500 300-700 700–1,365	~ # # ° °	-5.88274000E-3 Not available 2.40717800E+2 -1.35345890E+4	3.72449646E-5 5.09965000E+0 9.14879000E+1	7.55109624E-8 -6.29026000E-4 -2.20700000E-1	0 -1.07155000E-6 2.91406000E-4	0 0 2.15307400E-7	0 0 8.3860000E–11	0 0 -1.34404000E-14
СН3ОН	CH ₃ OH Methanol		. * # °	-2.02986750E-2 1.19790000E+0 See Table B.2	1.21910927E-4 2.45028000E-2	-2.23748473E-8 1.86162740E-5	0 -1.30674820E-8	0 0	0	0 0
C ₂ H ₅ Ol	C ₂ H ₅ OH Ethanol	250–550 270–600	κ c_p	-2.46663000E-2 -6.33595000E-2 See Table B.2	1.55892550E-4 3.20713470E-2	-8.22954822E-8 -6.25079576E-6	0	0 0	0	0

| *SOURCE: Andrews, J. R., and Biblarz, O., "Temperature Dependence of Gas Properties in Polynomial Form," Naval Postgraduate School, NPS67-81-001, January 1981.

APPENDIX

C

SELECTED PROPERTIES OF AIR, NITROGEN, AND OXYGEN

Table C.1 Selected properties of air at 1 atm^a

<i>T</i> (K)	ρ (kg/m ³)	c_p (kJ/kg-K)	$\frac{\mu \cdot 10^7}{(\text{N-s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	$k \cdot 10^3$ (W/m-K)	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.71ϵ
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1,000	0.3482	1.141	424.4	121.9	66.7	168	0.72ϵ
1,100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1,200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1,300	0.2679	1.189	496.0	185.1	82	238	0.719
1,400	0.2488	1.207	530	213	91	303	0.703
1,500	0.2322	1.230	557	240	100	350	0.685
1,600	0.2177	1.248	584	268	106	390	0.688

Appendix C

Table C.1 (continued)

<i>T</i> (K)	ho (kg/m ³)	c_p (kJ/kg-K)	$\frac{\mu \cdot 10^7}{(\text{N-s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	k · 10 ³ (W/m-K)	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
1,700	0.2049	1.267	611	298	113	435	0.685
1,800	0.1935	1.286	637	329	120	482	0.683
1,900	0.1833	1.307	663	362	128	534	0.677
2,000	0.1741	1.337	689	396	137	589	0.672
2,100	0.1658	1.372	715	431	147	646	0.667
2,200	0.1582	1.417	740	468	160	714	0.655
2,300	0.1513	1.478	766	506	175	783	0.647
2,400	0.1448	1.558	792	547	196	869	0.630
2,500	0.1389	1.665	818	589	222	960	0.613
3,000	0.1135	2.726	955	841	486	1,570	0.536

[°]SOURCE: Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 3rd Ed. Reprinted by permission, ©1990, John Wiley & Sons, Inc.

Table C.2 Selected properties of nitrogen and oxygen at 1 atm^a

<i>T</i> (K)	ρ (kg/m ³)	с _р (kJ/kg-K)	$\frac{\mu \cdot 10^7}{(\text{N-s/m}^2)}$	$v \cdot 10^6$ (m ² /s)	k · 10 ³ (W/m-K)	$\frac{\alpha \cdot 10^6}{(\text{m}^2/\text{s})}$	Pr
Nitrogen (1		,	. , , ,	19)	(,m-14)	- (iii /3)	Fľ
100	3.4388	1.070	68.8	2.00	0.50	2 (0	
150	2.2594	1.050	100.6	2.00	9.58	2.60	0.768
200	1.6883	1.030	129.2	4.45	13.9	5.86	0.759
250	1.3488	1.043	154.9	7.65 11.48	18.3	10.4	0.736
300	1.1233	1.042	178.2	15.86	22.2 25.9	15.8	0.727
350	0.9625					22.1	0.716
400	0.9623	1.042	200.0	20.78	29.3	29.2	0.711
450		1.045	220.4	26.16	32.7	37.1	0.704
500	0.7485	1.050	239.6	32.01	35.8	45.6	0.703
550 550	0.6739	1.056	257.7	38.24	38.9	54.7	0.700
	0.6124	1.065	274.7	44.86	41.7	63.9	0.702
600	0.5615	1.075	290.8	51.79	44.6	73.9	0.701
700	0.4812	1.098	321.0	66.71	49.9	94.4	0.706
800	0.4211	1.22	349.1	82.90	54.8	116	0.715
900	0.3743	1.146	375.3	100.3	59.7	139	0.721
1,000	0.3368	1.167	399.9	118.7	64.7	165	0.721
1,100	0.3062	1.187	423.2	138.2	70.0	193	0.718
1,200	0.2807	1.204	445.3	158.6	75.8	224	0.707
1,300	0.2591	1.219	466.2	179.9	81.0	256	0.701
Oxygen (O ₂	,)						
100	3.945	0.962	76.4	1.94	9.25	2.44	0.706
150	2.585	0.921	114.8	4.44	13.8	2.44	0.796
200	1.930	0.915	147.5	7.64	18.3	5.80	0.766
250	1.542	0.915	178.6	11.58	22.6	10.4	0.737
300	1.284	0.920	207.2	16.14	26.8	16.0	0.723
						22.7	0.711
350 400	1.100	0.929	233.5	21.23	29.6	29.0	0.733
400 450	0.9620	0.942	258.2	26.84	33.0	36.4	0.737
	0.8554	0.956	281.4	32.90	36.3	44.4	0.741
500	0.7698	0.972	303.3	39.40	41.2	55.1	0.716
550	0.6998	0.988	324.0	46.30	44.1	63.8	0.726
600	0.6414	1.003	343.7	53.59	47.3	73.5	0.729
700	0.5498	1.031	380.8	69.26	52.8	93.1	0.744
800	0.4810	1.054	415.2	86.32	58.9	116	0.743
900	0.4275	1.074	447.2	104.6	64.9	141	0.740
1,000	0.3848	1.090	477.0	124.0	71.0	169	0.733
1,100	0.3498	1.103	505.5	144.5	75.8	196	0.736
1,200	0.3206	1.115	532.5	166.1	81.9	229	0.736
1,300	0.2960	1.125	588.4	188.6	87.1	262	0.723

°SOURCE: Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 3rd Ed. Reprinted by permission, ⊚ 1990 John Wiley & Sons, Inc.