| Module: | Level: | Exam: |
| :---: | :---: | :---: |
| Computer Security | $2^{\text {nd }}$ Year Master (Artificial Vision) | Regular Final Session |
| Unauthorized documents | Duration: 1 hour 30 | Scientific calculator allowed |

Sunday, January 14, 2024
Answer clearly and concisely

## Exercise 1:07 pts (Operation modes and Padding)

A plaintext $M$ is divided into six blocks, $m_{1}, m_{2}, \ldots m_{6}$, encrypted with a symmetric cryptosystem, producing the encrypted blocks $c_{1}, c_{2}, \ldots c_{6}$. During transmission, errors affected some blocks.

1) What is the decryption result of each block $c_{i}$ in each of the following scenarios?
(a) ECB "Electronic Code Book" operation mode and $c_{1}$ and $c_{4}$ are erroneous.
(b) CBC "Cipher Block Chaining" operation mode and $I V, c_{2}$, and $c_{4}$ are erroneous.
(c) CBC "Cipher Block Chaining" operation mode and only $c_{3}$ is erroneous.
(d) CTR "Counter" operation mode and $I V, c_{2}$, and $c_{4}$ are erroneous.

We use a symmetric cryptosystem with a block size of 64 bits to encrypt a plaintext $M^{\prime}$.
2) What is the number of encrypted blocks and the ciphertext size in each of the following scenarios?
(a) $M^{\prime}$ of 72 bits with PKCS\#5 padding.
(b) $M^{\prime}$ of 128 bits with PKCS\#7 padding.
(c) $M^{\prime}$ of 80 bits with ANSI X.9.23 padding.

## Exercise 2:07 pts (RSA Cryptosystem)

Ali uses an RSA system with $p=29$ and $q=41$.

1) Calculate the values of the RSA modulus $N$ and $\varphi(n)$, the Euler's totient.
2) What is the smallest usable value of the encryption exponent $e$ such that $e \leq 10$ ? Justify your answer.
3) What are Ali's public and private keys in this case?
4) Omar wants to send securely the plaintext $m=32$ to Ali. What is the corresponding cryptogram $c$ ?
5) What plaintext $m$ corresponds to the cryptogram $c=32$ sent by Omar to Ali?
6) Show that, knowing the value of the RSA modulus $N(N=p q)$ and the associated Euler's totient $\varphi(N)$, we can determine the values of $p$ and $q$.
7) Using the method proposed in the previous question, determine the values of $p$ and $q$ if the RSA modulus $N=899$ and the associated Euler's totient $\varphi(N)=840$.

Note: $\forall m \in \mathbb{Z}_{n}-\{0\}, m^{281} \equiv m \bmod n$.

## Exercise 3 : 06 pts (Data Ecryption Standard (DES))

Consider the DES (Data Encryption Standard) cryptosystem.
Recall that its round function is $f\left(R_{i-1}, K_{i}\right)=P\left(S\left(E\left(R_{i-1}\right) \oplus K_{i}\right)\right)$.

1) The right half block received by a round is $R_{i-1}=(1 B 8 F A 541)_{16}$ and $K_{i}=(F 358 F 3134 A 15)_{16}$. Give the binary results of its expansion and after mixing it with the subkey.
2) The input data of the S-Boxes is $(7 C 24 A C C 3 E 017)_{16}$. Give the output binary values of $S_{3}, S_{6}$ and $S_{7}$.
