Module:	Level:		Exam:
Computer Security	2 nd Year Master (Artificial Vision)		Regular Final Session
Unauthorized documents	Duration: 1 hour 30		Scientific calculator allowed
Sunday, January 14, 2024		Answer cl	early and concisely

Exercise 1:07 pts (Operation modes and Padding)

A plaintext M is divided into six blocks, $m_1, m_2, \ldots m_6$, encrypted with a symmetric cryptosystem, producing the encrypted blocks $c_1, c_2, \ldots c_6$. During transmission, errors affected some blocks.

- 1) What is the decryption result of each block c_i in each of the following scenarios ?
 - (a) ECB "Electronic Code Book" operation mode and c_1 and c_4 are erroneous.
 - (b) CBC "Cipher Block Chaining" operation mode and *IV*, *c*₂, and *c*₄ are erroneous.
 - (c) CBC "Cipher Block Chaining" operation mode and only c_3 is erroneous.
 - (d) CTR "Counter" operation mode and IV, c_2 , and c_4 are erroneous.

We use a symmetric cryptosystem with a block size of 64 bits to encrypt a plaintext M'.

- 2) What is the number of encrypted blocks and the ciphertext size in each of the following scenarios?
 - (a) M' of 72 bits with PKCS#5 padding.
 - (b) M' of 128 bits with PKCS#7 padding.
 - (c) M' of 80 bits with ANSI X.9.23 padding.

Exercise 2:07 pts (RSA Cryptosystem)

Ali uses an RSA system with p = 29 and q = 41.

- 1) Calculate the values of the RSA modulus *N* and $\varphi(n)$, the Euler's totient.
- 2) What is the smallest usable value of the encryption exponent *e* such that $e \le 10$? Justify your answer.
- 3) What are Ali's public and private keys in this case ?
- 4) Omar wants to send securely the plaintext m = 32 to Ali. What is the corresponding cryptogram c?
- 5) What plaintext *m* corresponds to the cryptogram c = 32 sent by Omar to Ali ?
- 6) Show that, knowing the value of the RSA modulus N (N = pq) and the associated Euler's totient $\varphi(N)$, we can determine the values of p and q.
- 7) Using the method proposed in the previous question, determine the values of p and q if the RSA modulus N = 899 and the associated Euler's totient $\varphi(N) = 840$.

Note: $\forall m \in \mathbb{Z}_n - \{0\}, m^{281} \equiv m \mod n$.

Exercise 3:06 pts (Data Ecryption Standard (DES))

Consider the DES (Data Encryption Standard) cryptosystem. Recall that its round function is $f(R_{i-1}, K_i) = P(S(E(R_{i-1}) \oplus K_i))$.

- 1) The right half block received by a round is $R_{i-1} = (1B8FA541)_{16}$ and $K_i = (F358F3134A15)_{16}$. Give the binary results of its expansion and after mixing it with the subkey.
- 2) The input data of the S-Boxes is $(7C24ACC3E017)_{16}$. Give the output binary values of S_3 , S_6 and S_7 .