1.M+Mi Faculty of exact sciences, natural, and life sciences, University of Oum El Bouaghui 2023-2024

Solution of Machine Structure 1 Examination

Exercise 1

In this exercise, numbers will be represented in 8 bits.

1. Code the decimal numbers in binary: 32 and 122. ($0.5 * 2 \mathrm{pt}$)
$(32)_{10}=(00100000)_{2}$ and $(122)_{10}=(01111010)_{2}$
2. Code the integers $\mathbf{(+ 1 2 2)}$ and (-32) in 1's complement and in 2 's complement. (2pt)

Decimal	1's Complement	2' Complement
+122	01111010	01111010
-32	11011111	11100000

3. Calculate, in binary, the addition of the two decimal numbers 122 and (-32). (1pt)

01111010

- 00100000

01011010

4. Can the result of adding the two numbers (-122) and (-32) be represented in sign and absolute value using 8 bits? If so, why? If not, what are the limitations? (1pt)

No, we cannot represent $-122+-32$ in binary using 8 bits because the result of the addition in decimal will be -154 , and we cannot represent -154 on 8 bits according to the sign and absolute value representation. It requires 9 bits to represent it.

Exercise 2

The coding of a real number in floating point is done according to the IEEE 754-32 standard:

$$
(-1)^{\mathrm{S}} \times\left(1, \mathrm{M}_{\mathrm{n}}\right) \times 2^{\mathrm{E}}
$$

- S: the sign bit.
- E: the exponent represented in 8-bit (coded with excess 127).
$-M_{n}$: the mantissa normalized to 23 bits.

1. What are the smallest and largest decimal values for the exponent? $(0.5 * 2 \mathrm{pt})$

The exponent is encoded with excess 127 , meaning it is represented by the binary equivalent C such that: $\mathrm{C}=\mathrm{E}+127$.

Let E_{L} and E_{S} be the largest and smallest value of the exponent.
As the representation of C is done in binary in 8 bits, therefore: $\mathrm{C}_{\mathrm{L}}=2^{8}-1=255 ; \mathrm{C}_{\mathrm{S}}=0$
Hence $\mathrm{C}_{\mathrm{L}}=\mathrm{E}_{\mathrm{L}}+127 \leftrightarrow \mathbf{E}_{\mathrm{L}}=\mathbf{2 5 5}-\mathbf{1 2 7}=\mathbf{1 2 8}$

$$
\mathrm{C}_{\mathrm{S}}=\mathrm{E}_{\mathrm{S}}+127 \leftrightarrow \mathbf{E}_{\mathrm{S}}=\mathbf{0} \mathbf{- 1 2 7}=\mathbf{- 1 2 7}
$$

2. Code the following real numbers according to the IEEE standard 754-32: $\mathbf{(- 1 7 , 7 5)}$ and $(+21,05)(2 \mathrm{pt})$

- $(-17,75)_{10}=(10001,11)_{2}=(-1)^{1} \times(1,000111) \times 2^{4}<=>\mathrm{E}=4=>\mathrm{C}=4+127=131=$ $(10000011)_{2}$

$$
(-17,75)_{10}=\left(\begin{array}{lll}
1 & 10000011 & 00011100000000000000000
\end{array}\right)_{\text {IEEE } 754-32}
$$

- $(+21.05)_{10}=(10101.00000101)_{2}=(-1)^{0} \times(1,010100000101) \times 2^{4}<=>E=4=>C=4+127=$ $131=(10000011)_{2}$

$$
(+21.05)_{10}=\left(\begin{array}{lll}
0 & 10000011 & 01010000010100000000000
\end{array}\right)_{\text {IEEE 754-32 }}
$$

3. Convert to decimal the binary number (11000010010010100000000000000000) representing a sequence of bits coded according to the IEEE 754-32 standard. (2pt)
$(11000010010010100000000000000000)_{\text {IEEE }} 754-32 \Leftrightarrow S=1, C=(10000100)_{2}=132=>$ $\mathrm{E}=132-127=5 \quad \mathbf{0 , 5} \mathbf{p t}$
$\mathrm{M}_{\mathrm{n}}=100101 \Leftrightarrow(-1)^{\mathbf{1}} \times(1,100101) \times 2^{\mathbf{5}} \quad \mathbf{0 . 5 p t} \Rightarrow(110010.1)_{2}=(-\mathbf{5 0 , 5})_{10} \quad \mathbf{1} \mathbf{p t}$

Exercise 3 (6pt)

1. Simplify algebraically the following equation $E=(a+c+d)(b+c+d)$ and give its circuit with minimum of gates. (2pt)

Method 1: 1pt
$\mathrm{E}=(\mathrm{a}+(\mathrm{c}+\mathrm{d}))(\mathrm{b}+(\mathrm{c}+\mathrm{d}))=\mathrm{ab}+\mathrm{a}(\mathrm{c}+\mathrm{d})+\mathrm{b}(\mathrm{c}+\mathrm{d})+(\mathrm{c}+\mathrm{d})(\mathrm{c}+\mathrm{d})=\mathrm{ab}+\mathrm{a}(\mathrm{c}+\mathrm{d})+\mathrm{b}(\mathrm{c}+\mathrm{d})+$ $(c+d)=a b+(c+d)(a+b+1)=a b+c+d$

Method 2:

$$
\begin{aligned}
& E=(a+c+d)(b+c+d)=a b+a c+a d+b c+\mathbf{c}+c d+b d+c d+\mathbf{d d}=a b+a c+\mathbf{a d}+b c+c \\
& +c d+\mathbf{b d}+\mathbf{d}=a b+(1+a+b+d) c+(\mathbf{1}+\mathbf{a}+\mathbf{b}) \mathbf{d}=a b+c+d
\end{aligned}
$$

Logigram representing the function E. 1pt
2. Express $\mathrm{a} \oplus \mathrm{b}$ in the second canonical form. $(0,5 * 2 \mathrm{pt})$

a	b	$\mathrm{a} \oplus \mathrm{b}$	maxtermes
0	0	0	$\mathrm{a}+\mathrm{b}$
0	1	1	
1	0	1	
1	1	0	$\bar{a}+\bar{b}$

$$
\mathrm{a} \oplus \mathrm{~b}=(\mathrm{a}+\mathrm{b})(\bar{a}+\bar{b})
$$

3. When does $(\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c})+(\mathrm{a} \oplus \mathrm{c})=0$? $(\mathbf{1 p t})$

Method 1:

a	b	c	$\mathrm{a} \oplus \mathrm{b}$	$\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c}$	$\mathrm{a} \oplus \mathrm{c}$	$(\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c})+(\mathrm{a} \oplus \mathrm{c})$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	$\mathbf{0}$	$\mathbf{0}$
0	0	1	0	1	1	1
0	1	0	1	1	0	1
0	1	1	1	0	1	1
1	0	0	1	1	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	1	0	$\mathbf{0}$	$\mathbf{0}$
1	1	0	0	0	1	1
1	1	1	0	1	0	1

Method 2:
$(a \oplus b \oplus c)+(a \oplus c)=0 \Leftrightarrow a \oplus b \oplus c=0$ et $a \oplus c=0 \Leftrightarrow(a \oplus c) \oplus b=0$ et $a=c \Leftrightarrow 0 \oplus b$ $=0$ et $a=c \Leftrightarrow b=0$ et $a=c$
4. Provide the simplified function while clearly showing the grouping in the Karnaugh table:(2pt)

$\mathbf{c d}$				$\mathbf{0 0}$
$\mathbf{a b}$	10	11	$\mathbf{0 1}$	
$\mathbf{0 0}$	0	0	1	0
10	0	1	1	0
11	0	1	1	0
$\mathbf{0 1}$	0	1	0	1

$\mathrm{F}_{3}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\mathrm{ac}+\mathrm{bc} \overline{\mathrm{d}}+\overline{\mathrm{b}} \mathrm{cd}+\overline{\mathrm{a}} \mathrm{b} \overline{\mathbf{c}} \mathrm{d}$

$\mathbf{a b}$	$\mathbf{c d}$	$\mathbf{0 0}$	10	11	01
00	1	1	1	0	
10	1	0	1	0	
11	1	0	1	0	
01	1	0	1	1	

$\mathrm{F}_{4}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\overline{\mathrm{c}} \overline{\mathrm{d}}+\mathrm{cd}+\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{c}+\overline{\mathrm{a}} \mathrm{bd}$

$F_{1}(a, b, c, d)=a \bar{b}+b c$

$\mathbf{a b}$	cd	00	10	11
01				
00	1	0	1	1
10	0	0	0	0
11	0	0	0	0
01	$1 /$	1	0	1

$\mathrm{F}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\overline{\mathrm{a}} \overline{\mathbf{c}}+\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{d}+\overline{\mathrm{a}} \mathrm{b} \overline{\mathbf{d}}$

Exercice 4 (4pts)

Create a logic circuit to check whether a four-digit (a, b, c and d) binary number is prime . 1° Truth table: (1pt)

a	b	c	d	F	TypeTerm	Term	2° : Canonical Forms: (0.5*2pt)
0	0	0	0	0	Max	$a+b+c+d$	
0	0	0	1	1	Min	$\overline{\mathrm{a}} \mathrm{b} \bar{c} d$	
0	0	1	0	1	Min	āb̄cd ${ }^{-1}$	
0	0	1	1	1	Min	$\overline{\mathrm{a}} \mathrm{b}^{\bar{c}} \mathrm{c}$ d	1st Canonical From: Sum of MinTerm:
0	1	0	0	0	Max	$a+b^{-}+c+d$	
0	1	0	1	1	Min	ābcd	$F(a, b, c, d)=\bar{a} \bar{b} \bar{c} d+\bar{a} b \bar{c} d+\bar{a} b \overline{b c d}+\bar{a} b \bar{c} d+a \overline{b c d}+\mathrm{ab} \bar{c} d+a b \bar{c} d$
0	1	1	0	0	Max	$a+b+c+d$	
0	1	1	1	1	Min	ābcd	
1	0	0	0	0	Max	$\bar{a}+b+c+d$	2nd canonical Form: Product of MaxTerm:
1	0	0	1	0	Max	$\overline{\mathrm{a}}+\mathrm{b}+\mathrm{c}+\mathrm{d}$	$\begin{aligned} & F(a, b, c, d)=(a+b+c+d)(a+b+c+d)\left(a+b^{-}+\bar{c}+d\right)(\bar{a}+b+c+d)(\\ & \bar{a}+b+c+d)(\bar{a}+b+\bar{c}+d)(\bar{a}+b+c+d)\left(\bar{a}+b^{+}+\bar{c}+d\right)\left(\bar{a}+b^{-}+\bar{c}+d\right) \end{aligned}$

1	0	1	0	0	Max	$\bar{a}+b+\bar{c}+d$
1	0	1	1	1	Min	abcd
1	1	0	0	0	Max	$\bar{a}+b^{-}+c+d$
1	1	0	1	1	Min	abcd
1	1	1	0	0	Max	$\bar{a}+{ }^{-}+\bar{c}+d$
1	1	1	1	0	Max	$\overline{\mathrm{a}}+\mathrm{b}^{-}+\bar{c}+\mathrm{d}^{-}$

3° Simplification ($0.5 * 2 \mathrm{pt}$)

$\mathbf{a b}$	$\mathbf{c d}$	$\mathbf{0 0}$	10	11
$\mathbf{1 0 1}$				
$\mathbf{0 0}$	0	1	1	1
$\mathbf{1 0}$	0	0	1	0
$\mathbf{1 1}$	0	0	0	1
$\mathbf{0 1}$	0	0	1	1

$\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})=\bar{a} d+\bar{a} b \bar{c}+b \bar{c}+\bar{b} \bar{c} d$

4° Logigram (logical circuit) 1pt

