Module:	Level:		Exam:	
Computer Security	2 nd Year Master (Artificial Vision)		Regular Final Session	
Unauthorized documents	Duration: 1 hour 30		Scientific calculator allowed	
Sunday, January 14	4, 2024 Ans	wer cl	early and concisely	

Exercise 1:07 pts (Operation modes and Padding)

A plaintext M is divided into six blocks, $m_1, m_2, \ldots m_6$, encrypted with a symmetric cryptosystem, producing the encrypted blocks $c_1, c_2, \ldots c_6$. During transmission, errors affected some blocks.

- 1) What is the decryption result of each block c_i in each of the following scenarios ?
 - (a) ECB "Electronic Code Book" operation mode and c_1 and c_4 are erroneous.
 - (b) CBC "Cipher Block Chaining" operation mode and *IV*, *c*₂, and *c*₄ are erroneous.
 - (c) CBC "Cipher Block Chaining" operation mode and only c_3 is erroneous.
 - (d) CTR "Counter" operation mode and IV, c_2 , and c_4 are erroneous.

We use a symmetric cryptosystem with a block size of 64 bits to encrypt a plaintext M'.

- 2) What is the number of encrypted blocks and the ciphertext size in each of the following scenarios?
 - (a) M' of 72 bits with PKCS#5 padding.
 - (b) M' of 128 bits with PKCS#7 padding.
 - (c) M' of 80 bits with ANSI X.9.23 padding.

Exercise 2:07 pts (RSA Cryptosystem)

Ali uses an RSA system with p = 29 and q = 41.

- 1) Calculate the values of the RSA modulus *N* and $\varphi(n)$, the Euler's totient.
- 2) What is the smallest usable value of the encryption exponent *e* such that $e \le 10$? Justify your answer.
- 3) What are Ali's public and private keys in this case ?
- 4) Omar wants to send securely the plaintext m = 32 to Ali. What is the corresponding cryptogram c?
- 5) What plaintext *m* corresponds to the cryptogram c = 32 sent by Omar to Ali ?
- 6) Show that, knowing the value of the RSA modulus N (N = pq) and the associated Euler's totient $\varphi(N)$, we can determine the values of p and q.
- 7) Using the method proposed in the previous question, determine the values of p and q if the RSA modulus N = 899 and the associated Euler's totient $\varphi(N) = 840$.

Note: $\forall m \in \mathbb{Z}_n - \{0\}, m^{281} \equiv m \mod n$.

Exercise 3:06 pts (Data Ecryption Standard (DES))

Consider the DES (Data Encryption Standard) cryptosystem. Recall that its round function is $f(R_{i-1}, K_i) = P(S(E(R_{i-1}) \oplus K_i))$.

- 1) The right half block received by a round is $R_{i-1} = (1B8FA541)_{16}$ and $K_i = (F358F3134A15)_{16}$. Give the binary results of its expansion and after mixing it with the subkey.
- 2) The input data of the S-Boxes is $(7C24ACC3E017)_{16}$. Give the output binary values of S_3 , S_6 and S_7 .

00.50 pts

01,00 pts

Model Answer + Grading Rubric

Answer of exercise 1

1) The decryption result of each block c_i in each of the given scenarios are summarized in the following table:

01,00 pts	m_1	m_2	m_3	m_4	m_5	m_6
(a)	erroneous	correct	correct	erroneous	correct	correct
01,00 pts (b)	erroneous	erroneous	erroneous	erroneous	erroneous	correct
01,00 pts > (C)	correct	correct	erroneous	erroneous	correct	correct
01,00 pts > (d)	erroneous	erroneous	erroneous	erroneous	erroneous	erroneous

2) The number of encrypted blocks and the ciphertext size in each of the given scenarios are summarized in the following table:

	Number of encrypted blocks	Ciphertext size
01,00 pts M' of 72 bits with PKCS#5 padding	2	128 bits
01,00 pts M' of 128 bits with PKCS#7 padding	3	192 bits
01,00 pts M' of 80 bits with ANSI X.9.23 padding	2	128 bits

Answer of exercise 2

1) The RSA module $n = p \times q = 29 \times 41 = 1189$. The Euler's totient is $\varphi(n) = (p-1)(q-1) = 28 \times 40 = 2^2 \times 7 \times 2^3 \times 5 = 1220$.

2) The smalled usable value of the encryption exponent *e* such that $e \le 10$, is e = 3 because PGCD(3, 1220) = 1 and:

00.50 pts

- $\forall i \in \{2, 4, 6, 8, 10\}$: $PGCD(i, 1220) \neq 1$.
- PGCD(5, 1220) = 1 but 5 > 3.
- PGCD(7, 1220) = 1 but 7 > 3.
- PGCD(9, 1220) = 1 but 9 > 3 ____00,50 pts

3) Ali's public key is (n, e) = (1189, 3). The decryption exponent *d* must satisfy $e \times d \equiv 1 \mod \varphi(n)$ and using the extended Euclidean algorithm, we obtain:

 $1120 \times (1) + 3 \times (-373) = 1$. The decryption exponent is: $d = -373 \mod 1120 = 747 \mod 1120$.

i	r_i	q_i	α_i	β_i
1	1120	_	1	0
2	3	373	0	1
3	1	3	1	-373
4	0	_	_	_

Ali's private key is (n, d) = (1189, 747) . 00,50 pts

4) The cryptogram *c* corresponding to the plaintext m = 20: m = 32 et $c = m^e \mod n = 32^3 \mod 1189 = 2^{5^3} \mod 1189 = 2^{15} \mod 1189 = 2 \times 2^2 \times 2^4 \times 2^8 \mod 1189 = 2 \times 4 \times 16 \times 256 \mod 1189$. Hence, c = 665.

- 5) The plaintext *m* corresponding to the cryptogram c = 32: $m = c^d \mod n = 32^{747} \mod 1189 = 32^{281} \times 32^{281} \times 32^{185} \mod 1189 = 32^{187} \mod 1189 = 2^{935} \mod 1189 = 2^{281} \times 2^{281} \times 2^{281} \times 2^{92} \mod 1189 = 2^{95} \mod 1189 = 2^{15} \times 2^$
- 6) We know that: n = pq, so $q = \frac{n}{p}$. We know also that: $\varphi(n) = (p-1)(q-1) = pq - p - q + 1 = n - p - q + 1 = n - p - \frac{n}{p} + 1$ It follows that: $p\varphi(n) = np - p^2 - n + p \implies p^2 - p(n - \varphi(n) + 1) + n = 0$ This is a quadratic equation in p, with: a = 1, $b = -(n - \varphi(n) + 1)$ and c = n. It can be readily solved using the well-known quadratic formula:

 $(p,q) = \frac{-b \pm \sqrt{|b|^2 - 4ac}}{2a} = \frac{(n+1-\varphi(n)) \pm \sqrt{[n-\varphi(n)+1]^2 - 4n}}{2}$

7) We have n = 899 and $\varphi(n) = 840$: $(p,q) = \frac{(n+1-\varphi(n))\pm\sqrt{[n-\varphi(n)+1]^2-4n}}{2} = \frac{(899-840+1)\pm\sqrt{[899-840+1]^2-4\times899}}{2} = \frac{60\pm\sqrt{60^2-4\times899}}{2} = \frac{60\pm2}{2}$ Hence, p = 29 and q = 31. (or p = 31 and q = 29)

Answer of exercise B

2) The input data of the S-Boxes is $(7C24ACC3E017)_{16}$: $(7C24ACC3E017)_{16} = (011111 000010 010010 101100 010000 010111)_2$ The output of S_3 is: $S_3(010010) = S_3(0,9) = 13 = (1101)_2$ The output of S_6 is: $S_6(11110) = S_6(2,15) = 6 = (0110)_2$ The output of S_7 is: $S_7(000000) = S_7(0,0) = 4 = (0100)_2$ 01,00 pts