Module:	Level:	Exam:
Computer Security	$2^{\text {nd }}$ Year Master (Artificial Vision)	Regular Final Session
Unauthorized documents	Duration: 1 hour 30	Scientific calculator allowed

Sunday, January 14, 2024
Answer clearly and concisely

Exercise 1:07 pts (Operation modes and Padding)

A plaintext M is divided into six blocks, $m_{1}, m_{2}, \ldots m_{6}$, encrypted with a symmetric cryptosystem, producing the encrypted blocks $c_{1}, c_{2}, \ldots c_{6}$. During transmission, errors affected some blocks.

1) What is the decryption result of each block c_{i} in each of the following scenarios?
(a) ECB "Electronic Code Book" operation mode and c_{1} and c_{4} are erroneous.
(b) CBC "Cipher Block Chaining" operation mode and $I V, c_{2}$, and c_{4} are erroneous.
(c) CBC "Cipher Block Chaining" operation mode and only c_{3} is erroneous.
(d) CTR "Counter" operation mode and $I V, c_{2}$, and c_{4} are erroneous.

We use a symmetric cryptosystem with a block size of 64 bits to encrypt a plaintext M^{\prime}.
2) What is the number of encrypted blocks and the ciphertext size in each of the following scenarios?
(a) M^{\prime} of 72 bits with PKCS\#5 padding.
(b) M^{\prime} of 128 bits with PKCS\#7 padding.
(c) M^{\prime} of 80 bits with ANSI X.9.23 padding.

Exercise 2:07 pts (RSA Cryptosystem)

Ali uses an RSA system with $p=29$ and $q=41$.

1) Calculate the values of the RSA modulus N and $\varphi(n)$, the Euler's totient.
2) What is the smallest usable value of the encryption exponent e such that $e \leq 10$? Justify your answer.
3) What are Ali's public and private keys in this case?
4) Omar wants to send securely the plaintext $m=32$ to Ali. What is the corresponding cryptogram c ?
5) What plaintext m corresponds to the cryptogram $c=32$ sent by Omar to Ali?
6) Show that, knowing the value of the RSA modulus $N(N=p q)$ and the associated Euler's totient $\varphi(N)$, we can determine the values of p and q.
7) Using the method proposed in the previous question, determine the values of p and q if the RSA modulus $N=899$ and the associated Euler's totient $\varphi(N)=840$.

Note: $\forall m \in \mathbb{Z}_{n}-\{0\}, m^{281} \equiv m \bmod n$.

Exercise 3 : 06 pts (Data Ecryption Standard (DES))

Consider the DES (Data Encryption Standard) cryptosystem.
Recall that its round function is $f\left(R_{i-1}, K_{i}\right)=P\left(S\left(E\left(R_{i-1}\right) \oplus K_{i}\right)\right)$.

1) The right half block received by a round is $R_{i-1}=(1 B 8 F A 541)_{16}$ and $K_{i}=(F 358 F 3134 A 15)_{16}$. Give the binary results of its expansion and after mixing it with the subkey.
2) The input data of the S-Boxes is $(7 C 24 A C C 3 E 017)_{16}$. Give the output binary values of S_{3}, S_{6} and S_{7}.

Model Answer + Grading Rubric

Answer of exercise 1

1) The decryption result of each block c_{i} in each of the given scenarios are summarized in the following table:

$01,00 \mathrm{pts}$	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}
(a)	erroneous	correct	correct	erroneous	correct	correct
$01,00 \mathrm{pts} \geqslant$ (b)	erroneous	erroneous	erroneous	erroneous	erroneous	correct
$01,00 \mathrm{pts} \geqslant$ (c)	correct	correct	erroneous	erroneous	correct	correct
$01,00 \mathrm{pts} \geqslant(\mathrm{d})$	erroneous	erroneous	erroneous	erroneous	erroneous	erroneous

2) The number of encrypted blocks and the ciphertext size in each of the given scenarios are summarized in the following table:

| | Number of encrypted blocks | Ciphertext size |
| :--- | :--- | :---: | :---: |
| $01,00 \mathrm{pts}$ M^{\prime} of 72 bits with PKCS\#5 padding
 $01,00 \mathrm{pts}$ M^{\prime} of 128 bits with PKCS\#7 padding
 $01,00 \mathrm{pts}$ M^{\prime} of 80 bits with ANSI X.9.23 padding | 2 | 128 bits |

Answer of exercise Z

1) The RSA module $n=p \times q=29 \times 41=1189$
 The Euler's totient is $\varphi(n)=(p-1)(q-1)=28 \times 40=2^{2} \times 7 \times 2^{3} \times 5=1220$.
2) The smalled usable value of the encryption exponent e such that $e \leq 10$, is $e=3$ because $P G C D(3,1220)=$ 1 and:

- $\forall i \in\{2,4,6,8,10\}: \operatorname{PGCD}(i, 1220) \neq 1$.
- $\operatorname{PGCD}(5,1220)=1$ but $5>3$.
- $\operatorname{PGCD}(7,1220)=1$ but $7>3$.
- $\operatorname{PGCD}(9,1220)=1$ but $9>3$

3) Ali's public key is $(n, e)=(1189,3)$

The decryption exponent d must satisfy $e \times d \equiv 1 \bmod \varphi(n)$ and using the extended Euclidean algorithm, we obtain:
$1120 \times(1)+3 \times(-373)=1$. The decryption exponent is: $d=-373 \bmod 1120=747 \bmod 1120$.

i	r_{i}	q_{i}	α_{i}	β_{i}
1	1120	-	1	0
2	3	373	0	1
3	1	3	1	-373
4	0	-	-	-

Ali's private key is $(n, d)=(1189,747) \longleftarrow 00,50 \mathrm{pts}$
4) The cryptogram c corresponding to the plaintext $m=20$:
$m=32$ et $c=m^{e} \bmod n=32^{3} \bmod 1189=2^{5^{3}} \bmod 1189=2^{15} \bmod 1189=2 \times 2^{2} \times 2^{4} \times 2^{8}$ $\bmod 1189=2 \times 4 \times 16 \times 256 \bmod 1189$. Hence, $c=665$.
5) The plaintext m corresponding to the cryptogram $c=32$:
$m=c^{d} \bmod n=32^{747} \bmod 1189=32^{281} \times 32^{281} \times 32^{185} \bmod 1189=32^{187} \bmod 1189=2^{935}$ $\bmod 1189=2^{281} \times 2^{281} \times 2^{281} \times 2^{92} \bmod 1189=2^{95} \bmod 1189=2^{15} \times 2^{15} \times 2^{15} \times 2^{15} \times 2^{15} \times 2^{15} \times 2^{5}$ $\bmod 1189=665^{6} \times 32 \bmod 1189=122 \times 32 \bmod 1189$. Ainsi $m=337$.
6) We know that: $n=p q$, so $q=\frac{n}{p}$.

We know also that: $\varphi(n)=(p-1)(q-1)=p q-p-q+1=n-p-q+1=n-p-\frac{n}{p}+1$
It follows that: $p \varphi(n)=n p-p^{2}-n+p \Longrightarrow p^{2}-p(n-\varphi(n)+1)+n=0$
This is a quadratic equation in p, with: $a=1, b=-(n-\varphi(n)+1)$ and $c=n$.
It can be readily solved using the well-known quadratic formula:
$(p, q)=\frac{-b \pm \sqrt{|b|^{2}-4 a c}}{2 a}=\frac{(n+1-\varphi(n)) \pm \sqrt{[n-\varphi(n)+1]^{2}-4 n}}{2} \leqslant \quad 01,00 \mathrm{pts}$
7) We have $n=899$ and $\varphi(n)=840$:
$(p, q)=\frac{(n+1-\varphi(n)) \pm \sqrt{[n-\varphi(n)+1]^{2}-4 n}}{2}=\frac{(899-840+1) \pm \sqrt{[899-840+1]^{2}-4 \times 899}}{2}=\frac{60 \pm \sqrt{60^{2}-4 \times 899}}{2}=\frac{60 \pm 2}{2}$
Hence, $p=29$ and $q=31$. (or $p=31$ and $q=29$)

Answer of exercise 3

1) We have: $R_{i-1}=(1 B 8 F A 541)_{16}=(00011011100011111010010101000001)_{2}$ and $K_{i}=(F 358 F 3134 A 15)_{16}=(111100110101100011110011000100110100101000010101)_{2}$:
After expansion:
$E\left(R_{i-1}\right)=(100011110111110001011111110100001010101000000010)_{2}$
After mixing with the subkey:
$E\left(R_{i-1}\right) \oplus K_{i}=(011111000010010010101100110000111110000000010111)_{2}$
2) The input data of the S-Boxes is $(7 C 24 A C C 3 E 017)_{16}$:
$(7 C 24 A C C 3 E 017)_{16}=(011111000010010010101100110000111110000000010111)_{2}$
The output of S_{3} is: $S_{3}(010010)=S_{3}(0,9)=13=(1101)_{2}$
The output of S_{6} is: $S_{6}(111110)=S_{6}(2,15)=6=(0110)_{2}$
The output of S_{7} is: $S_{7}(000000)=S_{7}(0,0)=4=(0100)_{2}$
