L'arbi Ben M'hidi University

Faculty: Exact Sciences, Natural and Life sciencesIn: 17/0Department : Mathematics and Computer Science.DuraticLevel: Second year of Bachelor MathematicsDuratic

In: 17/01/2024 Duration: 1h30min

Algebra 3 test

~

Exercise 1: (6 pts)

1/ Calculate the matrix
$$T^n$$
, such that $T = \begin{pmatrix} 5 & 0 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
2/ Find the matrix $\exp N$, where $N = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercise 2: (8 pts)

Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

1/ Determine the characteristic polynomial $C_A(x)$.

2/ What can you say about the matrix A? Explain your answer.

3/ Find the eigenspace corresponding to each eigenvalue.

4 / Can you determine $\ln A$? Justify your answer.

5/ Solve the differential system X' = AX.

Exercise 3: (6 pts)

1/ In parts (a) and (b) determine whether the statement is true or false, and justify your answer.

(a) If A is a non diagonalizable matrix in $\mathbb{R}[x]$, then A is trigonalizable in $\mathbb{R}[x]$.

(b) If every eigenvalue of a matrix A has multiplicity 1, then A is diagonalizable.

2/ In parts (c) and (d) prove the propositions

(c) If A, B and C are matrices for which A is similar to B and B is similar to C, then A is similar to C.

(d) If λ is an eigenvalue of a square matrix A, then λ^5 is an eigenvalue of A^5 .

Solution:

Exercise 1:

$$\overline{1/T^n} = \left[\underbrace{\begin{pmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{pmatrix}}_{D} + \underbrace{\begin{pmatrix} 0 & 0 & 4\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}}_{N} \right]^n, \text{ on a } N^2 = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \text{ et donc } N \text{ est nilpotente}$$

d'indice 2.....(1*pt*) Alors $T^n = \sum_{k=1}^{n} C^k D^{n-k} N^k = D^n + n D^{n-1} N$ (1*nt*) so $T^n = \begin{pmatrix} 5^n & 0 & 4n5^{n-1} \\ 0 & 2^n & n2^{n-1} \end{pmatrix}$ (1*nt*)

Alors
$$T^n = \sum_{k=0}^{n} C_n^n D^{n-k} N^k = D^n + nD^{n-1} N \dots (1pt)$$
 so $T^n = \begin{pmatrix} 0 & 2^n & n2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix} \dots (1pt)$
tel que $nD^{n-1}N = \begin{pmatrix} n5^{n-1} & 0 & 0 \\ 0 & n2^{n-1} & 0 \\ 0 & 0 & n2^{n-1} \end{pmatrix} \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4n5^{n-1} \\ 0 & 0 & n2^{n-1} \\ 0 & 0 & 0 \end{pmatrix} \dots (0.5)$ et $D^n = \begin{pmatrix} 5^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{pmatrix} \dots (0.5)$
 $2/\exp N = I + N + \frac{1}{2!}N^2 + \dots + \frac{1}{n!}N^n + \dots = I + N \dots (1pt)$
 $\exp N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \dots (1pt)$

Exercise 2: (8 pts)

 $1/C_A(x) = \det(M - xI_3) = -(1 - x)(1 + x)(3 - x)...(2pts).$ 2/ We can say that A is diagonalizable because $C_A(x)$ is split and has simple roots, so $m_A(x) = -C_A(x)$ is also split at simple roots 3/ Find the eigenspaces

we obtain
$$\begin{cases} \text{for } \lambda_1 = 1, E_{\lambda_1} = Vect \{(-1, 0, 1)\} \dots (0.75) \\ \text{for } \lambda_2 = -1, E_{\lambda_2} = Vect \{(1, -2, 1)\} \dots (0.75) \\ \text{for } \lambda_3 = 3, E_{\lambda_3} = Vect \{(1, 2, 1)\} \dots (0.75) \end{cases}$$

4/ We can't determine the matrix $\ln A$, because the function logarithme is not defined on $\lambda_2 = -1$.

5/ We have
$$X(t) = c_1 e^{\lambda_1 t} X_1 + c_2 e^{\lambda_2 t} X_2 + c_3 e^{\lambda_3 t} X_3$$
, $/c_1, c_2, c_3 \in \mathbb{R}...(1pt)$ then the solution
of $X' = AX$ is $X(t) = c_1 e^t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + c_3 e^{3t} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -c_1 e^t + c_2 e^{-t} + c_3 e^{3t} \\ -2c_2 e^{-t} + 2c_3 e^{3t} \\ c_1 e^t + c_2 e^{-t} + c_3 e^{3t} \end{pmatrix} / c_1, c_2, c_3 \in \mathbb{R}....(1 \text{ pt})$
Exercise 3: (6 pts)

1/

(a) is false ...(0.25) because we can find an irreductible characteristic polynomial in $\mathbb{R}[x]$, as example for the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $C(x) = x^2 + 1$, so we can find a non diagonalizable and non trigonalizable matrix in the same time in $\mathbb{R}[x] \dots (1pt)$

(b) is true ...(0.25) If every eigenvalue of a matrix A has multiplicity 1, then $m_A(x) = -C_A(x)$ will be split at simple roots so A will be diagonalizable....(1pt) 2/

(c) A is similar to B so it exist an invertible matrix P such that $A = P.B.P^{-1}.....*(0.5)$ and B is similar to C, then it exist an other invertible matrix P' such that $B = P'.C.P'^{-1}....*$ *(0.5)

remplace ** in * we obtain $A = P.P'.C.P'^{-1}.P^{-1} = (P.P').C.(P.P')^{-1}/P.P'$ is invertible because P and P' are and $(P.P')^{-1} = P'^{-1}.P^{-1}...(1pt)$ So A is similar to C.

(d) λ is an eigen value for a matrix $A \in M_n(\mathbb{k})$ means that exist a non vector V for \mathbb{k}^n such as $A.V = \lambda.V....*(0.5)$ So $A^5.V = A^5(\lambda.V) = A^4\lambda(A.V)$ by * we obtain

$$A^{5}.V = A^{5}(\lambda.V) = A^{4}\lambda(A.V) = A^{4}\lambda(\lambda.V) = A^{4}\lambda^{2}.V$$

by the same methode we obtain

$$A^{5}.V = A^{3}\lambda^{2} (A.V) = A^{3}\lambda^{2} (\lambda.V) = A^{3}.\lambda^{3}.V$$

= $A^{2}.\lambda^{3} (A.V) = A^{2}\lambda^{2} (\lambda.V) = A^{2}.\lambda^{3}.V$
= $A\lambda^{3} (A.V) = A.\lambda^{3} (\lambda.V) = A\lambda^{4}V = \lambda^{4} (A.V)$
= $\lambda^{4} (\lambda.V) = \lambda^{5}V$

so λ^5 is an eigen value for $A^5...(1pt)$.