L'arbi Ben M'hidi University

Faculty: Exact Sciences, Natural and Life sciences
Department : Mathematics and Computer Science.
Level: Second year of Bachelor Mathematics

In: 17/01/2024
Duration: 1h30min

$\underline{\text { Algebra } 3 \text { test }}$

Exercise 1: (6 pts)

1/ Calculate the matrix T^{n}, such that $T=\left(\begin{array}{lll}5 & 0 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
2/ Find the matrix $\exp N$, where $N=\left(\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.

Exercise 2: (8 pts)

Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)$.
1/ Determine the characteristic polynomial $C_{A}(x)$.
2/ What can you say about the matrix A? Explain your answer.
3/ Find the eigenspace corresponding to each eigenvalue.
4/ Can you determine \ln A? Justify your answer.
5/ Solve the differential system $X^{\prime}=A X$.

Exercise 3: (6 pts)

1/ In parts (a) and (b) determine whether the statement is true or false, and justify your answer.
(a) If A is a non diagonalizable matrix in $\mathbb{R}[x]$, then A is trigonalizable in $\mathbb{R}[x]$.
(b) If every eigenvalue of a matrix A has multiplicity 1, then A is diagonalizable.

2/ In parts (c) and (d) prove the propositions
(c) If A, B and C are matrices for which A is similar to B and B is similar to C, then A is similar to C.
(d) If λ is an eigenvalue of a square matrix A, then λ^{5} is an eigenvalue of A^{5}.

Solution:

Exercise 1:

$1 / T^{n}=[\underbrace{\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)}_{D}+\underbrace{\left(\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)}_{N}]^{n}$, on a $N^{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ et donc N est nilpotente d'indice 2.......(1pt)
Alors $T^{n}=\sum_{k=0}^{n} C_{n}^{k} D^{n-k} N^{k}=D^{n}+n D^{n-1} N \ldots . .(1 p t)$ so $T^{n}=\left(\begin{array}{ccc}5^{n} & 0 & 4 n 5^{n-1} \\ 0 & 2^{n} & n 2^{n-1} \\ 0 & 0 & 2^{n}\end{array}\right) \ldots .(1 p t)$ tel que $n D^{n-1} N=\left(\begin{array}{ccc}n 5^{n-1} & 0 & 0 \\ 0 & n 2^{n-1} & 0 \\ 0 & 0 & n 2^{n-1}\end{array}\right)\left(\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 0 & 4 n 5^{n-1} \\ 0 & 0 & n 2^{n-1} \\ 0 & 0 & 0\end{array}\right) \ldots(0.5)$ et $D^{n}=$ $\left(\begin{array}{ccc}5^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n}\end{array}\right)$
$2 / \exp N=I+N+\frac{1}{2!} N^{2}+. .+\frac{1}{n!} N^{n}+\ldots=I+N \ldots(1 p t)$
$\exp N=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+\left(\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right) \ldots(1 p t)$

Exercise 2: (8 pts)

$1 / C_{A}(x)=\operatorname{det}\left(M-x I_{3}\right)=-(1-x)(1+x)(3-x) \ldots .(2 p t s)$.
2/ We can say that A is diagonalizable because $C_{A}(x)$ is split and has simple roots, so $m_{A}(x)=-C_{A}(x)$ is also split at simple roots
$3 /$ Find the eigenspaces
we obtain $\left\{\begin{array}{c}\text { for } \lambda_{1}=1, E_{\lambda_{1}}=\operatorname{Vect}\{(-1,0,1)\} \ldots(0.75) \\ \text { for } \lambda_{2}=-1, E_{\lambda_{2}}=\operatorname{Vect}\{(1,-2,1)\} \ldots(0.75) \\ \text { for } \lambda_{3}=3, E_{\lambda_{3}}=\operatorname{Vect}\{(1,2,1)\} \ldots \ldots(0.75)\end{array}\right.$.
4/ We can't determine the matrix $\ln A$, because the function logarithme is not defined on $\lambda_{2}=-1$.

5/ We have $X(t)=c_{1} e^{\lambda_{1} t} X_{1}+c_{2} e^{\lambda_{2} t} X_{2}+c_{3} e^{\lambda_{3} t} X_{3}, / c_{1}, c_{2}, c_{3} \in \mathbb{R} \ldots(1 p t)$ then the solution of $X^{\prime}=A X$ is $X(t)=c_{1} e^{t}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)+c_{2} e^{-t}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{3 t} \\ -2 c_{2} e^{-t}+2 c_{3} e^{3 t} \\ c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{3 t}\end{array}\right) /$ $c_{1}, c_{2}, c_{3} \in \mathbb{R} . \ldots . .(1 \mathrm{pt})$

Exercise 3: (6 pts)

1/
(a) is false ...(0.25)because we can find an irreductible characteristic polynomial in $\mathbb{R}[x]$, as example for the matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), C(x)=x^{2}+1$, so we can find a non diagonalizable and non trigonalizable matrix in the same time in $\mathbb{R}[x] \ldots(1 p t)$
(b) is true ..(0.25)If every eigenvalue of a matrix A has multiplicity 1 , then $m_{A}(x)=$ $-C_{A}(x)$ will be split at simple roots so A will be diagonalizable....(1pt)
2/
(c) A is similar to B so it exist an invertible matrix P such that $A=P \cdot B \cdot P^{-1} \ldots \ldots *(0.5)$ and B is similar to C, then it exist an other invertible matrix P^{\prime} such that $B=P^{\prime} . C . P^{\prime-1} \ldots . . *$ * (0.5)
remplace ${ }^{* *}$ in * we obtain $A=P \cdot P^{\prime} . C \cdot P^{\prime-1} \cdot P^{-1}=\left(P \cdot P^{\prime}\right) . C \cdot\left(P \cdot P^{\prime}\right)^{-1} / P \cdot P^{\prime}$ is invertible because P and P^{\prime} are and $\left(P . P^{\prime}\right)^{-1}=P^{\prime-1} . P^{-1} \ldots(1 p t)$
So A is similar to C.
$(d) \lambda$ is an eigen value for a matrix $A \in M_{n}(\mathbb{k})$ means that exist a non vector V for \mathbb{k}^{n} such as $A . V=\lambda . V \ldots . . *(0.5)$
So $A^{5} . V=A^{5}(\lambda . V)=A^{4} \lambda(A . V)$ by * we obtain

$$
A^{5} . V=A^{5}(\lambda . V)=A^{4} \lambda(A . V)=A^{4} \lambda(\lambda . V)=A^{4} \lambda^{2} . V
$$

by the same methode we obtain

$$
\begin{aligned}
A^{5} . V & =A^{3} \lambda^{2}(A \cdot V)=A^{3} \lambda^{2}(\lambda . V)=A^{3} \cdot \lambda^{3} . V \\
& =A^{2} \cdot \lambda^{3}(A \cdot V)=A^{2} \lambda^{2}(\lambda \cdot V)=A^{2} \cdot \lambda^{3} \cdot V \\
& =A \lambda^{3}(A \cdot V)=A \cdot \lambda^{3}(\lambda \cdot V)=A \lambda^{4} V=\lambda^{4}(A \cdot V) \\
& =\lambda^{4}(\lambda \cdot V)=\lambda^{5} V
\end{aligned}
$$

so λ^{5} is an eigen value for $A^{5} \ldots(1 p t)$.

