Department of mathematics

Exam

-``@-Exercise 1

Given A, B and C three parts of a set E, 1) Show that : (a) $(A \cap B) \cup \complement_E B = A \cup \complement_E B$. (b) $(A \setminus B) \setminus C = A \setminus (B \cup C)$. (c) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C)$. 2) Simplify : (a) $\overline{(A \cup B)} \cap \overline{(C \cup \overline{A})}$. (b) $\overline{(A \cap B)} \cup \overline{(C \cap \overline{A})}$.

Exercise 2

We define the relation \mathcal{R} on \mathbb{R}^2 by :

 $(x,y)\mathcal{R}(x^{'},y^{'}) \Leftrightarrow x+y=x^{'}+y^{'}$

1) Show that \mathcal{R} is an equivalence relation.

2) Find the equivalence class of the couple (0, 0).

Exercise 3

1) Determine if part H is a subgroup of group G.
a) G = (Z, +); H = {even numbers}
b) G = (Z, +); H = {odd numbers}.
2) Show that U = {z ∈ C, |z| = 1} equipped with a

2) Show that $U = \{z \in \mathbb{C}, |z| = 1\}$ equipped with multiplication is a subgroup of (\mathbb{C}^*, \times) .