Exam

Exercise 1

Given A, B and C three parts of a set E,

1) Show that:
(a) $(A \cap B) \cup \complement_{E} B=A \cup \complement_{E} B$.
(b) $(A \backslash B) \backslash C=A \backslash(B \cup C)$.
(c) $A \backslash(B \cap C)=(A \backslash B) \cap(A \backslash C)$.
2) Simplify :
(a) $\overline{(A \cup B)} \cap \overline{(C \cup \bar{A})}$.
(b) $\overline{(A \cap B)} \cup \overline{(C \cap \bar{A})}$.

Exercise 2

We define the relation \mathcal{R} on \mathbb{R}^{2} by :

$$
(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x+y=x^{\prime}+y^{\prime}
$$

1) Show that \mathcal{R} is an equivalence relation.
2) Find the equivalence class of the couple $(0,0)$.

Exercise 3

1) Determine if part H is a subgroup of group G.
a) $G=(\mathbb{Z},+) ; H=\{$ even numbers $\}$
b) $G=(\mathbb{Z},+) ; H=\{$ odd numbers $\}$.
2) Show that $U=\{z \in \mathbb{C},|z|=1\}$ equipped with multiplication is a subgroup of $\left(\mathbb{C}^{*}, \times\right)$.
