Level: 1st year "Computer Science"
Date: 18/01/2024
Module: Algorithmic and Data Structures 1
Duration: 1h30m

Exam $\mathrm{n}^{\circ} 1$

Standard Correction

Exercise $\mathrm{n}^{\circ} 1$ (Course questions) (5 points)
Q1. Check the correct answer, how are the elements of an array organized in RAM?(0.25 point) Randomly
Contiguously
\square The last element that is added into an array will be the first to come out
Each programming language has its own way of organizing elements in any table
Q2. Determine the errors in the following C program, then write it correctly in the box opposite. (1 point -0.25 for each error)

```
#include <stdio.h>
main( )
{
int digit, s;
float N;
s=0;
while( N!!=0)
{
digit=N%10;
s+=digit ;
N=N/10;
}
printf ("%f \n", s);
}
```

```
#include <stdio.h>
main( )
{
int N, digit, s;
scanf ( "%d", &N);
s=0;
while( N!=0)
{
digit=N%10;
s+=digit ;
N=N/10;}
printf ("%d \n", s);
}
```

Q3. Complete, to increase the value of a counter, we use an increment (++). (0.25 point)
Q4. What is the difference between the while loop and the repeat loop? (0.5 point)
While to express iterations in which the first execution of the body of the loop is subject to a condition, the number of executions can be $=0$.
Repeat to express iterations in which the first execution of the body of the loop is not subject to a condition, the body of the loop executes at least once.
Q5. What are the following functions: (0.75 point / 0.25 for each function)

- Length () : it provides the length of string.
- $\quad \mathbf{s q r t}()$: function returns the square root of a real number.
- $\mathbf{a b s}()$: function returns the absolute value of a real number .
- Q6. Check the correct answer, what does a matrix represent in algorithms? (0.25 point) \square Multidimensional array.
\square Two-dimensional array.
Q7. Type_Month $=$ (JANUARY, FEBRUARY, ..., DECEMBER). Type_Month is an enumerated type, is this declaration correct? Explain
This declaration is not correct (0.25 point) because it is necessary to list all the values. (0.5 point). Correct declaration

Type_Month = (JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);

Q8. Complete, a set of values with the same variable name, the same type and identified by a number, is called an array (0.25 point)

Q9. Declare new types or structures that make it possible to store a basketball player, who is characterized by his name, his date of birth, his nationality, and his height. (1 point)

Type N_Date= Record
Day : integer ;
Month: integer;
Year: integer;
EndRecord

Type player $=$ Record
Name : string ;/Name :array [1..20] character ;
Data: N_Date;
Nationality: string;
Size: real;
EndRecord

Exercise ${ }^{\circ} 2$

 (5 points)1.

2. Translate the algorithm into a C program (2 points)

```
#include <stdio.h>
main(){
    int A,B,C;
    char op;
    printf("Enter two integers \n");
    scanf("%d%d",&A,&B);
    printf("Enter the operator \n");
    scanf("%c",&op);
    switch(op) {
        case '+': C=A+B;
        break;
        case '-': C=A-B;
        break;
        case '*': C=A*B;
        break;
        case '/': C=A/B;
        break;
        default: printf ("Error \n");
        break;
    }
    printf ("The result is %d",C);
}
```


Exercise n ${ }^{\circ} 3$

Algorithm Perfect_square;
Variables i, X, RC : integer; (0.5 point)
CP: Boolean;

```
Begin
Write (" Enter a natural integer");
Read (X);
CP}\leftarrow\mathrm{ False ; i }\leftarrow0
While ((i<= X div 2) and (CP=false)) do
    If (X=(i*i)) then
    CP}\leftarrow\mathrm{ True ;
    RC}\leftarrow\textrm{i}
    Endif
    i}\leftarrow\textrm{i}+1
endwhile
If ( CP=true) then
Write ("The given number is a perfect square and its root is , RC);
```


Exercise n ${ }^{\circ}$ 4

Algorithm Succession_three_values ;
Variables T :array[1..150] integer ;

Begin

Repeat

Write ("Give the size of the array $n \leq 150$ ") $;(0.5$ point $)$
Read (n) ;
Until ($\mathrm{n}>0$ and $\mathrm{n} \leq 150$)

Write ("Give the values V1, V2 and V3"); (0.5 point)
Read (V1, V2, V3);

```
\(\mathrm{i} \leftarrow 1\); NBrep \(\leftarrow 0\);
While ( \(\mathrm{i}<\mathrm{n}\) ) do
    If ( \(\mathrm{T}[\mathrm{i}]=\mathrm{V} 1\) and \(\mathrm{T}[\mathrm{i}+1]=\mathrm{V} 2\) and \(\mathrm{T}[\mathrm{i}+2]=\mathrm{V} 3\) ) then
        NBrep \(\leftarrow\) NBrep +1 ;
        \(\mathrm{i} \leftarrow \mathrm{i}+3\);
    else
        \(\mathrm{i} \leftarrow \mathrm{i}+1\)
    Endif
Endwhile
Write ("Number of successions of values",V1, V2, V3, " is ",NBrep) ;
End
```

