-Supposons maintenant que les composants sont i.i.d de fiabilité $p=\frac{1}{2}$; donner dans ce cas la signature du chaque système : On utilise la méthode des liens, soit $r_i(4)$ le nombre de liens de taille i, $\alpha_i(4)=\frac{r_i(4)}{\binom{4}{i}}$ et $s_i=\alpha_{5-i}(4)-\alpha_{4-i}(4)$. Alors on a

*Système I : d'après l'ensemble M on a $r_1(4) = 0$, $r_2(4) = 3$, $r_3(4) = 3$, $r_4(4) = 1$ donc $\alpha_1(4) = 0$, $\alpha_2(4) = \frac{1}{2}$, $\alpha_3(4) = \frac{3}{4}$, $\alpha_4(4) = 1$ et $s_1 = \frac{1}{4}$, $s_2 = \frac{1}{4}$, $s_3 = \frac{1}{2}$, $s_4 = 0$.

Donc $S_I = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0)$(0.5 points)

*Système II: d'après l'ensemble M' on a $r_1(4) = 1$, $r_2(4) = 3$, $r_3(4) = 4$, $r_4(4) = 1$ donc $\alpha_1(4) = \frac{1}{4}$, $\alpha_2(4) = \frac{1}{2}$, $\alpha_3(4) = 1$, $\alpha_4(4) = 1$ et $s_1 = 0$, $s_2 = \frac{1}{2}$, $s_3 = \frac{1}{4}$, $s_4 = \frac{1}{4}$.

Donc $S_{II} = (0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4})$(0.5 points)

* On peut dire: D'après la forme des signatures S_I et S_{II} des deux systèmes et les shémas, les coupes et les liens minimaux des deux systèmes on peut dire que les deux systèmes sont duals l'un à l'autre.....(0.5 points)

- La fiabilité du système. on a $R_{Sys} = \sum_{i=1}^{4} s_i \sum_{j=0}^{i-1} {4 \choose j} (1-p)^j p^{4-j} = (\frac{1}{2})^4 \sum_{i=1}^{4} s_i \sum_{j=0}^{i-1} {4 \choose j}$ car $p = \frac{1}{2}$

*Système I: $R_{Sys} = \left(\frac{1}{2}\right)^4 \left(\frac{1}{4} + \frac{5}{4} + \frac{11}{2} + 0\right) = 7\left(\frac{1}{2}\right)^4 = \frac{7}{16}$(0.25 points)

*Système II: $R_{Sys} = \left(\frac{1}{2}\right)^4 \left(0 + \frac{5}{2} + \frac{11}{4} + \frac{15}{4}\right) = 9\left(\frac{1}{2}\right)^4 = \frac{9}{16}$(0.25 points)

Bonne chance