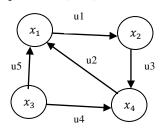
Promotion : 2ème année Licence Informatique

Jeudi 18/01/2024 Durée : 1 H 30 mn

Examen - Théorie des graphes -

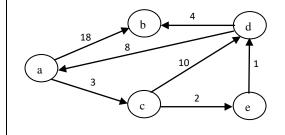
Exercice n°=1: (4 pts)


Soit A une matrice associée à un graphe G:

$$A = \left(\begin{array}{ccccc} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

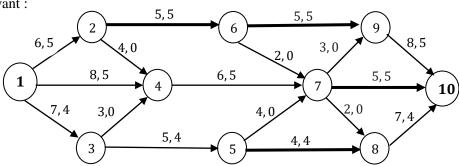
- 1) Quelle est le type de la matrice d'adjacence A? (1 pt)
- 2) Reconstituer le graphe G à partir de la matrice d'incidence A.(2 pts)
- 3) G est-il un graphe simple? Justifier votre réponse. (1 pt)

Exercice n°=2: (3,5 pts)


Soit le graphe G = (X, U) suivant :

- 1. Soit $A = \{x_2, x_3\}$.
 - a. Donner le cocycle w(A) engendré par A et son vecteur caractéristique \vec{w} . (0.25 pt + 0.5 pt)
 - b. Le cocycle w(A) est-il élémentaire ? Justifier votre réponse. (0.25 pt + 0.5 pt)
- Calculer une base de cycles en indiquant les différentes étapes.
 (2 pts)

Exercice n°=3: (Recherche du plus court chemin) (4 pts)


Soit le graphe *G* suivant :

- Déterminer un chemin de poids minimal allant du sommet a
 à chacun des autres sommets du graphe G en indiquant les
 différentes étapes. (2.5 pts)
- 2. Déterminer le chemin le plus court μ_{ab} joignant le sommet a à b ainsi que sa longueur $l(\mu_{ab})$. (1 pt + 0.5 pt)

Exercice n°=4: (4.5 pts)

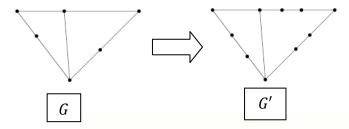
Soit le flot *f* suivant :

- 1. Le flot f proposé est-il complet ? Justifier votre réponse. (0.25 pt + 0.25 pt)
- 2. Le flot f proposé est-il réalisable ? Justifier votre réponse. (0.25 pt + 0.25 pt)
- 3. Calculer la valeur du flot $\varphi^{?}$ de cette itération. (0.25 pt)
- 4. Ce flot f est-il maximal, en justifiant votre réponse? si non l'augmenter et calculer le flot maximal. (0.25 pt + 0.5 pt + 2.5 pts)

Tournez la feuille

Nom :	Prénom :	Groupe :	Note (QCM):	4
-------	----------	----------	-------------	---

Questions de compréhension (QCM) : (4 pts)


Cochez la (les) bonne (bonnes) réponse(s) dans ce qui suit :

1) Parmi les éléments suivants, quels sont ceux absolument nécessaires pour définir un graphe non orienté ?

11011 01101100 1		
Sommets (ou points ou nœuds		
	Arêtes	
	Arcs	
	Boucles	

2) Dans le graphe ci-dessous, la subdivision G' du graphe G est obtenue par une succession de :

0		
2 subo	livisions élémentaires	
3 subo	livisions élémentaires	
4 subo	livisions élémentaires	
5 subo	livisions élémentaires	

3) Un graphe est qualifié de complet si :

	Toutes ses arêtes sont colinéaires	
Tous ses sommets sont deux à deux adjacen		
	Il est composé de droites	
Il est orienté		

4) Un chemin élémentaire peut passer plusieurs fois par le même arc :

Vrai	
Faux	

5) Le degré d'un sommet :

e) Le degre d'un sommee.		
	Le nombre associé au sommet	
	Le nombre de sommets minoré de 1	
	Le nombre d'arêtes du graphe	
	Le nombre d'arêtes connectées à ce sommet	

6) La somme des degrés des sommets d'un graphe est :

	graphe est:		
Un nombre pair et un nombre impa			
	Un nombre pair		
	Un nombre entier naturel		
	Un nombre impair		

7) Une matrice sommets-arcs est composée d'éléments dont les valeurs peuvent être :

0
1
-1
'Vrai' ou 'Faux'

8) Un graphe partiel est:

Le graphe initial privé de quelques nœuds et des arêtes qui lui sont adjacents
Le graphe initial privé de quelques arêtes
C'est un graphe privé de quelques nœuds et des arêtes qui lui sont adjacents que l'on prive ensuite de quelques arêtes

9) Le nombre des itérations de l'algorithme de recherche d'une *base de cycles* est égal au nombre :

de sommets
d'arcs
d'arêtes

10) Qu'est-ce qu'un arbre couvrant?

Un graphe partiel qui est un arbre
Un sous graphe qui est un arbre
Un sous graphe partiel qui est un arbre

11) Si le graphe est sans triangle, alors on applique la propriété 2 d'Euler :

in propriete - a Easter t		
	$m \le 6 \times n - 3$	
,	$m \leq 3 \times n - 6$	
	$m \le 2 \times n - 4$	
	$m \le 4 \times n - 2$	

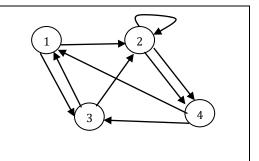
12) Un cycle hamiltonien est un cycle qui passe par tous les sommets sans répétitions.

Vrai
Faux

13) Un graphe contenant un chemin Hamiltonien est toujours un graphe Hamiltonien

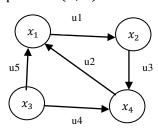
CDC
Vrai
Faux

Promotion : 2ème année Licence Informatique

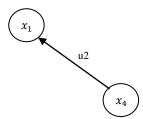

Jeudi 11/01/2024 Durée : 1H30

Corrigé Examen - Théorie des graphes -

Exercice n°=1: (4 pts)


- 1) La matrice d'adjacence A est une matrice sommet-sommet (définition 2). (1 pt)
- 2) Le graphe G associé à la matrice d'incidence A. (2 pts)
- 3) G n'est pas simple.

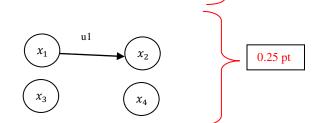
Car G admet une boucle et la multiplicité de l'arc (1,2) est égale à $m_{23}=2$. (1 pt)


Exercice n°=2: (3,5 pts)

Soit le graphe G = (X, U) suivant :

- 1. Soit $A = \{x_2, x_3\}$.
 - a. Donner le cocycle w(A) engendré par A et son vecteur caractéristique \vec{w} . (0.25 pt + 0.5 pt)
 - b. Le cocycle w(A) est-il élémentaire ? Justifier votre réponse. (0.25 pt + 0.5 pt)
- Calculer une base de cycles en indiquant les différentes étapes.
 (2 pts)

- 1. Soit $A = \{x_2, x_3\}$.
 - a. $w(A) = w^{+}(A) \cup w^{-}(A) = \{u3, u4, u5\} \cup \{u1\} = \{u1, u3, u4, u5\}$ (0.25 pt) $\vec{w}(A) = (-1, 0, +1, +1, +1)$ (0.5 pt)
 - b. Le cocycle w(A) est élémentaire (0.25 pt)
 car la suppression de A engendre une seule composante connexe. (0.5 pt)


- 2. Soit G = (X, U) tel que $X = \{x_1, x_2, x_3, x_4\}$ et $U = \{u1, u2, u3, u4, u5\}$
 - 1) Initialisation:

 $G_0 = (X, \emptyset)$ où : $m_0 = 0, p_0 = 4$ et $v(G_0) = 0$

 x_1 x_2 x_3 x_4 0.25 pt

(i = 1) <u>Itération 1 :</u>

 $G_1 = (X, \{u1\})$ et $m_1 = 1$ et $p_1 = 3$ pas de cycle $v(G_1) = v(G_0) = 0$

$$(i = i + 1 = 2)$$
 Itération 2:
 $G_2 = (X, \{u1, u2\})$ et $m_2 = 2$ et $p_2 = 2$
pas de cycle
 $v(G_2) = v(G_1) = 0$
 $(i = i + 1 = 3)$ Itération 3:

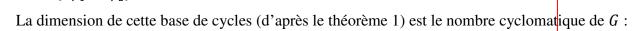
$$(i = i + 1 = 3)$$
 Itération 3:
 $G_3 = (X, \{u1, u2, u3\})$ et $m_3 = 3$ et $p_3 = 2$
le cycle $\mu_1 = (u1, u2, u3)$
 $\vec{w}_{\mu_1} = (-1, -1, -1, 0, 0)$
 $v(G_3) = v(G_2) + 1 = 0 + 1 = 1$

$$(i = i + 1 = 4)$$
 Itération 4 :

$$G_4 = (X, \{u1, u2, u3, u4\}) \text{ et } m_4 = 4 \text{ et } p_4 = 1$$
pas de cycle
$$v(G_4) = v(G_3) = 1$$

$$(i = i + 1 = 5) \; \underline{It\acute{e}ration \, 5 :}$$

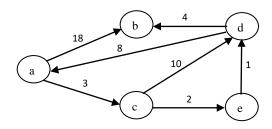
$$G_5 = (X, \{u1, u2, u3, u4, u5\}) \; \text{et} \; m_5 = 5$$

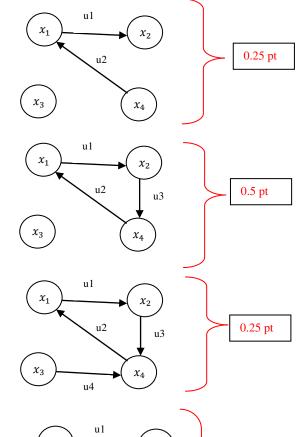

$$\text{le cycle } \mu_2 = (u4, u5, u2)$$

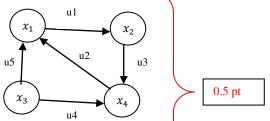
$$\overrightarrow{w}_{\mu_2} = (0, -1, 0, -1, +1)$$

$$v(G_5) = v(G_4) + 1 = 2$$

$$(i = 5) = (m = 5) \Rightarrow \text{ OUI alors TERMINER}$$


$$\text{Alors } \{\overrightarrow{w}_{\mu_1}, \; \overrightarrow{w}_{\mu_2}\} \; \text{est une base de cycles}$$

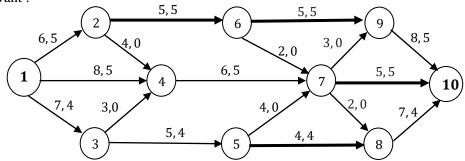

$$v(G) = m - n + p = 5 - 4 + 1 = 2 = v(G_5)$$


Exercice n°=3: (Recherche du plus court chemin) (4 pts)

Soit le graphe *G* suivant :

(2.5 pts)		Sommets				
Etapes (k)	D	a	b	c	d	e
1	{a}	0	18	<u>3</u>	$+\infty$	+∞
2	{a, c }	0	18	3	13	<u>5</u>
3	$\{a,c,\boldsymbol{e}\}$	0	18	3	<u>6</u>	5
4	$\{a,c,e,d\}$	0	<u>10</u>	3	6	5
5	$\{a, c, e, d, \boldsymbol{b}\}$	0	10	3	6	5

Le chemin le plus court μ_{ab} joignant le sommet a à b est donné par la suite des sommets :


$$\mu_{ab} = (a - c - e - d - b)$$
 (1 pt)

avec une longueur minimale égale à :

$$l(\mu_{ab}) = 3 + 2 + 1 + 4 = \lambda_b = 10$$
. (0.5 pt)

Exercice n°=4: (4.5 pts)

Soit le flot f suivant :

- Le flot f proposé n'est pas complet (0.25 pt)
 car il existe un chemin allant de la source 1 au puits 10 qui n'as pas d'arcs saturés (1 4 7 8 10).
 (0.25 pt)
- 2. Le flot f proposé est réalisable (0.25 pt)

car: (0.25 pt)

-
$$\varphi(u_i) \ge 0 \ \forall j \in \{1, ..., m\} \Leftrightarrow \varphi \ge 0$$

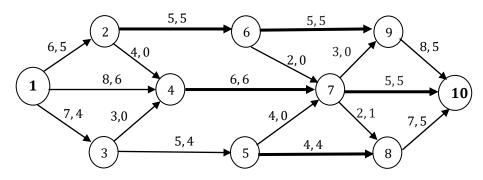
-
$$\varphi(u_j) \leq c(u_j), \forall u_j \in U$$

- 3. $\varphi^? = \sum_{j \in w^+(s)} \varphi_j = \sum_{j \in w^-(p)} \varphi_j = \varphi(1,2) + \varphi(1,4) + \varphi(1,3) = \varphi(9,10) + \varphi(7,10) + \varphi(8,10) = 5 + 5 + 4 = 5 + 5 + 4 = 14 \text{ (0.25 pt)}$
- 4. Ce flot f n'est pas maximal (0.25 pt).

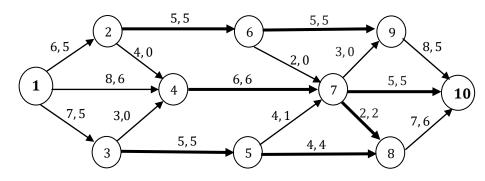
car il existe une <u>chaine augmentante</u> : $A = \{1 - 4 - 7 - 8 - 10\}$ (0.5 pt)

Calcul du flot maximum (2.5 pts = 1pt + 1pt + 0.5pt)

Itération 1 =
$$((A = \{ \}) + \varepsilon + \varphi + MAJ \ des \ flux \ sur \ le \ graphe) = (0.25pt + 0.25pt + 0.25pt + 0.25pt + 0.25pt) = 1pt$$


Itération 2 = $((A = \{ \}) + \varepsilon + \varphi + MAJ \ des \ flux \ sur \ le \ graphe) = (0.25pt + 0.25pt + 0.25pt + 0.25pt + 0.25pt) = 1pt$

Itération 3 = $(A = \{ ... - STOP \} + \varphi_{max}) = (0.25pt + 0.25pt) = 0.5pt$


$$A = \{1 - 4 - 7 - 8 - 10\}$$

$$\varepsilon = min\{8 - 5, 6 - 5, 2 - 0, 7 - 4\} = min\{3, 1, 2, 3\} = 1$$

$$\varphi^{new} = \varphi^? + \varepsilon = 14 + 1 = 15$$

$$\begin{split} A &= \{1-3-5-7-8-10\} \\ \varepsilon &= \min\{7-4,5-4,4-0,2-1,7-5\} = \min\{3,1,4,1,2\} = 1 \\ \varphi^{new\prime} &= \varphi^{new} + \varepsilon = 15+1 = 16 \end{split}$$

$$A = \{1 - 2 - 4 - STOP\} \text{ ou } A = \{1 - 4 - STOP\} \text{ ou } A = \{1 - 3 - 4 - STOP\}$$

Le sommet 10 n'est pas marqué, ALORS terminé, le flot est maximum : $\varphi_{max} = \varphi^{new}$

$$\varphi_{max} = \sum \left(\varphi(s,x)/x \in \Gamma_R^+(s) \right) = \varphi(1,2) + \varphi(1,4) + \varphi(1,3) = 5 + 6 + 5 = 16$$

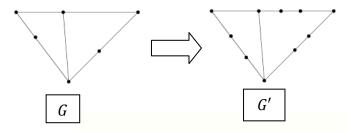
ou

$$\varphi_{max} = \sum \left(\varphi(x, p) / x \in \Gamma_R^-(p) \right) = \varphi(9, 10) + \varphi(7, 10) + \varphi(8, 10) = 5 + 5 + 6 = 16$$

Alors:

$$\varphi_{max} = 16$$

Questions de compréhension (QCM): (4 pts = 16 * 0.25pt)


Cochez la (les) bonne (bonnes) réponse(s) dans ce qui suit :

1) Parmi les éléments suivants, quels sont ceux absolument nécessaires pour définir un graphe non orienté ?

Sommets (ou points ou nœuds)
Arêtes
Arcs
Boucles

2) Dans le graphe ci-dessous, la subdivision G' du graphe G est obtenue par une succession de :

	8 1	
	2 subdivisions élémentaires	
	3 subdivisions élémentaires	
\times	4 subdivisions élémentaires	
	5 subdivisions élémentaires	

3) Un graphe est qualifié de complet si :

	Toutes ses arêtes sont colinéaires
\times	Tous ses sommets sont deux à deux adjacents
	Il est composé de droites
	Il est orienté

4) Un chemin élémentaire peut passer plusieurs fois par le même arc :

	1015
	Vrai
\times	Faux

5) Le degré d'un sommet :

	3) Le degre d'un sommet.
	Le nombre associé au sommet
	Le nombre de sommets minoré de 1
	Le nombre d'arêtes du graphe
\times	Le nombre d'arêtes connectées à ce sommet

6) La somme des degrés des sommets d'un graphe est :

	graphe est:
	Un nombre pair et un nombre impair
\times	Un nombre pair
	Un nombre entier naturel
	Un nombre impair

7) Une matrice sommets-arcs est composée d'éléments dont les valeurs peuvent être :

\times	0
\times	1
\times	-1
	'Vrai' ou 'Faux'

8) Un graphe partiel est:

	Le graphe initial privé de quelques nœuds et des			
	arêtes qui lui sont adjacents			
\times	Le graphe initial privé de quelques arêtes			
	C'est un graphe privé de quelques nœuds et des arêtes			
	qui lui sont adjacents que l'on prive ensuite de			
	quelques arêtes			

9) Le nombre des itérations de l'algorithme de recherche d'une base de cycles est égal au nombre :

	de sommets
\times	d'arcs
	d'arêtes

10) Qu'est-ce qu'un arbre couvrant?

	, .
\times	Un graphe partiel qui est un arbre
	Un sous graphe qui est un arbre
	Un sous graphe partiel qui est un arbre

11) Si le graphe est *sans triangle*, alors on applique la propriété 2 d'Euler :

	<u>I</u> <u>I</u>	
	$m \le 6 \times n - 3$	
	$m \le 3 \times n - 6$	
\times	$m \le 2 \times n - 4$	
	$m \le 4 \times n - 2$	

12) Un cycle hamiltonien est un cycle qui passe par tous les sommets sans répétitions.

\times	Vrai
	Faux

13) Un graphe contenant un chemin Hamiltonien est toujours un graphe Hamiltonien

	Vrai
\times	Faux