Larbi Ben Mhidi University - Oum El Bouaghi-

Faculty of exact sciences, natural and life sciences

Department of Mathematics and Computer Science

Level: 1st year MI

Duration:1h30

Exam: Analysis 1

Exercise 1 (points)

1) Let a and b be two numbers where $a \in \mathbb{Q}^{+}, b \in \mathbb{Q}^{+}$and $\sqrt{a b} \notin \mathbb{Q}^{+}$. Prove that $\sqrt{a}+\sqrt{b} \notin \mathbb{Q}^{+}$.
2) Let A be a subset of \mathbb{R} bounded from above, we know the set $-A=\{-x ; x \in A\}$
. Prove that: $\inf (-A)=-\sup A$.
3) Prove that: $\forall x \in \mathbb{R}: \arctan x+\operatorname{arccotan} x=\frac{\pi}{2}$.
4) Write the expression $L(x)=\sin ^{3} x \cos ^{3} x$ in linear form (Note that: $\sin x \cos x=\frac{1}{2} \sin 2 x$).

Exercise 2 (points)
Let f be a function defined in the interval $I=\left[2,+\infty\left[\right.\right.$ by $f(x)=\ln x-\frac{1}{x}+2$.

1) a) Prove that the function f is strictly increasing on I.
b) Using the Lagrange's finite-increment theorem Prove that: $\forall a, b \in I:|f(b)-f(a)| \leq \frac{3}{4}|b-a|$.
2) Let $\left(v_{n}\right)_{n \in \mathbb{N}},\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequences defined by: $\forall n \in \mathbb{N}:\left\{\begin{array}{c}u_{0}=2 \\ u_{n+1}=f\left(u_{n}\right)\end{array} ;\right.$; $\left\{\begin{array}{c}v_{0}=3 \\ u_{n+1}=f\left(v_{n}\right)\end{array}\right.$
a) Study the monotonicity of the two sequences $\left(v_{n}\right)_{n \in \mathbb{N}},\left(u_{n}\right)_{n \in \mathbb{N}}$
b) Prove that: $\forall n \in \mathbb{N}:\left|v_{n+1}-u_{n+1}\right| \leq \frac{3}{4}\left|v_{n}-u_{n}\right|$.
c) Using the proof by induction, prove that: $\forall n \in \mathbb{N}:\left|v_{n}-u_{n}\right| \leq\left(\frac{3}{4}\right)^{n}$.
3) Prove that $\left(v_{n}\right)_{n \in \mathbb{N}}$ and $\left(u_{n}\right)_{n \in \mathbb{N}}$ are adjacent.
4) We put $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=\ell$.
a) Prove that $\forall n \in \mathbb{N}:\left|\ell-u_{n}\right| \leq\left|v_{n}-u_{n}\right| . \quad$ b) Deduce a value rounded to 10^{-2} for ℓ.

Exercise 3 (_points) Let f be a function defined in the interval $\mathbb{R b y} g(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x}, x>0 \\ e^{x^{2}}-\cos x, x \leq 0\end{array}\right.$.

1) Examine the continuity of g over \mathbb{R}.
2) Using L'Hopital's rule, calculate $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x}$.
3) Examine the derivability of g over \mathbb{R}.
4) Express $g^{\prime}(x)$ in terms of x.
5) Is the function g of class C^{1} on \mathbb{R} ? justify your answer.
6) Using L'Hopital's rule, calculate $\lim _{x \rightarrow+\infty}[g(x)-x]$, What do you conclude?
