Oum El Bouaghi University
Department of Mathematics and Informatics
Master 1: Mathematics
Optimization under constraints
Final Exam solution
21-05-2023

Exercise 01: (See the course)
-(01 POINT) The formula of constrained optimization problem in general case under equality constraints.
-(01 POINT)Lagrange's theorem
-(03 POINTS) and theorem (take $p=1$ and $n=2$).
Exercise 02:
-(01.5 POINTS) Feasible set is compact (bounded and closed)
-(01.5 POINTS) Lagrange conditions are satisfied (write the theorem of Lagrange) .
-(01 POINTS) The critical points of $f(x, y)$

$$
\begin{gathered}
L(x, y)=\ln (x-y)-\sqcap(x 2+y 2-2) \\
\nabla L(x, y)=0 \\
\left\{\begin{array}{c}
\frac{1}{x-y}-2 \lambda x=0 \\
-\frac{1}{x-y}-2 \lambda y=0
\end{array}\right.
\end{gathered}
$$

(02 POINTS)Finaly, we can find 4 points (rejected 3 points and accepted one point) because $x>y$

$$
x=(1,-1)
$$

-(01.5 POINT) Determine the optimal solution of $f(x, y)$.
the function $f=\ln$ is concave function and $-\mathrm{g}(\mathrm{x}, \mathrm{y})$ is also concave so the sum of two concaves is concave function then the point $x=(1,-1)$ present the maximum of $f(x, y)$.

Exercise 03:

$$
\left\{\begin{array}{c}
\min f(X)=\min -\sum_{i=1}^{n} x_{i}^{2} \\
\text { st } \\
\Omega=\left\{\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n}, \varphi\left(x_{1}, \ldots x_{n}\right)=\sum_{i=1}^{n} x_{i}^{4}-1 \leq 0\right\}
\end{array}\right.
$$

-(01 POINT) The existence of the optimum (compact set)
-(01 POINT) Constraints are qualified
-(01.5 POINT) Using KKT formula to solve the problem
(01.5 POINT)By the formula of KKT we find

If $\lambda=0$ we have $x=0$
If $\lambda \neq 0$ we have

$$
\begin{gathered}
-2\left(x_{1}, x_{2}, \ldots, x_{n}\right)+4 \lambda\left(x_{1}^{3}, x_{2}^{3}, \ldots, x_{n}^{3}\right)=0 \\
\forall i \in[1, n]-4 \lambda x_{i}\left(\frac{1}{2 \lambda}-x_{i}^{2}\right)=0
\end{gathered}
$$

So,

$$
\left\{\begin{array}{c}
x_{i}=0 \\
\text { or } \\
\frac{1}{2 \lambda}=x_{i}^{2}
\end{array}\right.
$$

Then

$$
\frac{n_{0}}{4 \lambda^{2}}=1
$$

with n_{0} is the number of x such that $x_{i} \neq 0$
-(02.5 POINT) Give the vector X^{*} such that $f\left(X^{*}\right)=\min _{\Omega} f(X)$
f admet a minimum under the form

$$
\frac{1}{\sqrt{2 \sqrt{n}}}(\pm 1, \pm 1, \ldots, \pm 1)
$$

