The EBG structure with a forest metallic carbon nanotubes analysed by iterative method WCIP

Chahrazed Dridi*, Mourad Zaabat, Azeddine Boudine
Laboratory of Actif Component and Materials, Sciences Faculty, Oum El Bouaghi University, 04000, Algeria

A R T I C L E I N F O
Article history:
Received 30 January 2015
Received in revised form 5 April 2015
Accepted 7 April 2015
Available online 6 May 2015

Keywords:
Carbon nanotube
EBG structure
WCIP method
Terahertz frequency

A B S T R A C T
This study is dedicated to analysis of electromagnetic bandgap circuits based on the carbon nanotubes often called EBG structure, the carbon nanotubes are very promising candidates in the future technology.

The WCIP iterative method based on the concept of wave introduces a new process related to incident wave and the reflected wave by diffraction operators defined in the spectral and spatial domain.

The method has the advantage of simplicity since it does not involve basic functions and neither matrix inversions, like other methods of calculation.

This is a rapid method and this grace to the use of the Fourier transform for the passage of spatial domain to the spectral domain and the inverse.

In this work, we used the WCIP method, to analysis a forest of carbon nanotubes to characterize the EBG structure that operates as a bandstop to remove unwanted electromagnetic waves in a certain frequency range and showed that the geometric parameters of the carbon nanotubes are very important in the responses of the filters.

Introduction

In 1991, the researcher Iijma discovered carbon nanotubes (CNTs) that have since been the subject of an intensive research [1]. Seen their exceptional intrinsic properties, they become very interesting in many fields of science and technology, especially in the electronic domain.

Their remarkable structure, their electrical and mechanical properties have attracted much interest in their application for nanoelectronics components, their one-dimensional (1D) character and the nature of their carbon atoms makes them very sensitive to the charge, chemical properties allow advanced chemical functionalization, and their mechanical properties make them compatible with most substrates, for all these qualities, here comes the iterative method WCIP for modeling of a forest of carbon nanotubes applied as viawholes for micrometric structure.

Study of the carbon nanotubes in the terahertz frequencies

Carbon nanotubes (CNTs) have been of great interest for use as electronic devices such as field emission sources [2], transistors [3] and nanotransmission lines [4] due to their conductivity metal and exceptional mobility.
Since the discovery of the antenna made of carbon nanotubes in 2004 [5], the interest to nanoantennas has increased steadily. Furthermore, vertically aligned carbon nanotubes are extremely attractive for applications in nano-antenna THz and other nanoelectronic devices. Implementation of THz devices based on carbon nanotubes would also lay the basis for a super-fast quantum electronics.

The electromagnetic bandgap structures have attracted much attention in recent years for promising application in the fields of microelectronics and communications. The main characteristic of EBG structures is to act as a device band stop to remove undesirable electromagnetic waves in a certain frequency range.

In this context, we have chosen to work principally on an electromagnetic bandgap structure formed with metallic carbon nanotubes called chair carbon nanotubes Fig. 1.

Geometric characteristics

The graphene sheet is a structure consisting of carbon atoms arranged in a hexagonal mesh, as the winding of this sheet, the carbon nanotube thus produced single wall is a cylinder that its structure is determined by the pair of integers (n, m) defining features a characteristic vector \(\overrightarrow{C_h} \) called a chiral vector, divided into two unit vectors of the crystal system \(\overrightarrow{a_1} \) et \(\overrightarrow{a_2} \) separated by an angle of 60° Fig. 2 [6].

\[
\overrightarrow{C_h} = n \overrightarrow{a_1} + m \overrightarrow{a_2} \quad \text{avec} \quad 0 \leq m \leq n
\]

There are three groups of carbon nanotubes the arm chair, zigzags and chiral. When Hamada indices are equal (n = m), the axis of the nanotube is perpendicular to the c–c bond and \(\theta = 30° \) we have an arm chair nanotube. When the nanotube axis is parallel to a the C–C bond, \(\theta = 0° \) and (m = 0, n \(\neq \) m) is the zigzag nanotube finally the chiral nanotube is represented by indices (n \(\neq \) m) and 0 < \(\theta \) < 30°.

The carbon nanotube may be also defined in terms of diameter d and angle \(\theta \) using chiral indices Hamada, by the following equations [7]:

\[
d_t = \frac{C_h}{\pi} = a_{c-c} \sqrt{3} \sqrt{n^2 + nm + m^2} \]

\[
\theta = \arctan \left(\frac{m \sqrt{3}}{m + 2n} \right)
\]

The distance between two atoms is \(a_{c-c} = 1.42\text{Å} \). Like the carbon nanotubes are cylindrical their modeling is an inductance L given by the following formula [8]:

\[
L = \frac{\mu_0}{2\pi} \left[h \ln \left(\frac{h + \sqrt{r^2 + h^2}}{r} \right) + \frac{2}{Z} \left(r - \sqrt{r^2 + h^2} \right) \right]
\]

r: radius of carbon nanotube.

h: length of carbon nanotube.

Fig. 3 shows the inductance of the carbon nanotube depending on its length.

Theory of iterative method

The iterative method denoted “WCIP” (Concept Wave iterative process) is an integral method based on the concept of wave to resolve electromagnetic scattering problems and analysis of
planar circuits, passive and active circuits and since 2009 it has been extended to the analysis of integrated waveguide substrates [9,10].

The iterative process is based on the Fast Fourier Transform with this help the WCIP presents fast convergence and short memory consumption.

This method depends on the manipulation of an incident wave and the reflected instead of electromagnetic field [11].

Thus, the method defines two operators, one in the space domain and the other in the spectral domain.

The passage from one domain to another is assured by the Fourier transform. The WCIP method [12] uses easier equations to solve than the integral methods, there are no trial functions and no matrixes inversions.

Analysis of carbon nanotubes structure with the WCIP method

The Electromagnetic Bandgap Structures (EBG) are periodic cells that have evolved primarily in the optical domain by the name of photonic bandgap structures (PBG) in the late 1980 [13].

These periodic structures have very interesting features that make them very promising candidates for a number of applications [14]. As the propagation of electromagnetic waves in some frequency bands and prohibit them in other bands known as the bandgap.

This structure can be represented by two unit cells one with metallic carbon nanotube like via hole and the other empty.

The concept of wave is introduced by writing the electric field and current density in the expression of the incident and reflected wave that leads to the following equations:

\[A = \frac{1}{2\sqrt{\varepsilon_0}} (E + Z_0 J) \] (5)

\[B = \frac{1}{2\sqrt{\varepsilon_0}} (E - Z_0 J) \] (6)

\[Z_0 = \sqrt{\frac{\varepsilon_0}{\mu_0}} \] is the characteristic impedance of vacuum.

The iterative process is to establish a recurrent relationship between incident wave (and reflected wave.

By using (5) and (6), the integral equation can be rewritten in the spectral domain by:

\[\tilde{B}_{pq} = B_{pq} \tilde{A}_{pq} \] (7)

where \(B_{pq} \) is the diffraction operator in the spectral domain.

Boundary conditions and continuity of electromagnetic fields in each sub-space fields of \(S \) are expressed by an equation inside:

\[A_{ij} = S_{ij} B_{ij} + A_{0ij} \] (8)

\[S_{ij} = \frac{Z_{CNT} + Z_0}{Z_{CNT} - Z_0} \] (9)

The \(A_{0ij} \) source term is added to specify which via hole is excited, \(S \) is the spatial diffraction operator describing the boundary conditions on the surface of discontinuity \(\Omega \).

This interface (\(\Omega \)) is divided into cells and can include sub-domains: dielectric (D), metal (M) and source(S) each domain is presented by the function of Heaviside \(H_j \) as:

\[H_j = \begin{cases} 1 & \text{on the domain } j \\ 0 & \text{elsewhere} \end{cases} \]

\(Z_{CNT} \) is the impedance of carbon nanotubes depending on the inductance \(L \).

\[\left(\Delta_T + k^2_0 \right) E = j\omega \mu_0 J \] (10)

\(J \): Current density in the via hole centered
\(w \): angular frequency
\(k_0 = W/c \): Wave number in vacuum
\(c \): celerity
\(\Delta_T \): Laplace operator along \(x \) and \(y \)
\(\mu_0 \): vacuum permeability

By solving equation (8) it can have an expression of the electric field \(E \).

The unit cell of the structure described above is isolated, bounded by periodic walls and has a carbon nanotube at its center.

The Floquet periodic boundary condition is considered in this approach and a scalar function \(F_{abpq} \) corresponding to the modes waveguide square periodic with dimensions \(dx \times dx \) is envisaged.

\[F_{abpq}(x, y) = \frac{1}{D} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j(k_x x + k_y y)} \] (11)

The boundary conditions on the holes are separately processed by means of the spatial operator defined above.

Results and discussion

The indications concerning the structure studied are presented in Fig. 1. We have chosen to simulate in first place the

Fig. 4 – Scattering parameters S11 and S21.
structure formed by a minimum number of carbon nanotubes (NXN = 8X8).

The results coincide perfectly with those of other authors [15], we have not described these results in this paper.

Then We have worked with a structure presenting a large number of metallic carbon nanotubes, we took the number of CNT NXN = 16X16, the diameter d = 5 nm, the length h = 18 μm and the other dimensions of structure are a = b = 10 μm.

We achieved our results for a frequency range that lies between the terahertz and near infrared.

In Fig. 4, we have the response of a stopband filter which presents a resonance at 8.35 THz where the value of the corresponding wavelength is (λ = 35.96 μm) implying that \(\frac{\lambda}{2} = 17.92 \mu \text{m} \). This value of (\(\lambda/2 \)) fits well with the length of the carbon nanotube used for simulation.

Fig. 5 shows the distribution of the current density and the electric field for different values of frequencies.

In Fig. 5 (a) we have the distribution of the current density and the electric field at frequency \(f = 8.3 \) THz represents the resonant frequency.

In Fig. 5 (b) and Fig. 5 (c) we presented the distribution of current density and electric field in the frequency \(f = 16.5 \) THz, which is none other than the anti-resonance and for frequency \(f = 20 \) THz.

We find in the literature several studies that have addressed this type of structure such as [16] the novelty of this work is the use of metallic carbon nanotubes instead of...
metallic via holes, also the nano-sized of the carbon tube we allowed to have resonances in the terahertz allowing at the nano transmission the opportunity to evolve more and more through the use of carbon nanotubes and thus the realization of the miniature components with high-performance.

Conclusion

In this article the EBG structure based on carbon nanotubes is characterized by an efficient numerical method based on wave concept iterative process (WCIP), widely used for planar circuits. we showed that carbon nanotubes are the candidates promising for nanotransmission.

The simulation results obtained confirm that the parameters of the studied structure are filtering criteria in terahertz frequencies and the carbon nanotubes can be useful for the realization of filters such as past band, stop bands and many other applications in the domains of transmission.

REFERENCES