Mechanism of the sonochemical production of hydrogen

Slimane Merouania,b,*, Oualid Hamdaouia, Yacine Rezguic, Miloud Gueminic

aLaboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar – Annaba University, P.O. Box 12, 23000 Annaba, Algeria
bDepartment of Chemical Engineering, Faculty of Pharmaceutical Engineering Process, University of Constantine 3, 25000 Constantine, Algeria
cLaboratory of Applied Chemistry and Materials Technology, University of Oum El-Bouaghi, P.O. Box 358, 04000 Oum El Bouaghi, Algeria

\textbf{A B S T R A C T}

It has been long recognized that propagation of an ultrasonic wave in water results in hydrogen production. The chemical effects of ultrasound (sonochemistry) originate from acoustic cavitation, that is, the formation, growth and implosive collapse of microscopic bubbles in liquid irradiated by ultrasound wave. Enormous temperatures and pressures are generated within the bubbles at the collapse, making each bubble as a microreactor within which typical flame reactions occur. The combustion in the cavitation bubbles yield species such as \(^{1} \mathrm{OH}, \mathrm{H}, \mathrm{O}, \mathrm{HO}_{2}\) and others. Although \(\mathrm{H}_{2}\) is the most molecular product of water sonolysis, the mechanism of its production is until now not understood and the most reported suggestions are controversial. In this paper, a comprehensive numerical work was carried out, for the first time, to explain the mechanism of ultrasound induced generation of \(\mathrm{H}_{2}\) in water. Computer simulations of chemical reactions occurring inside a bubble oscillating in water irradiated by an ultrasonic wave have been performed for different conditions. A kinetics mechanism of 25 reversible chemical reactions was proposed for studying the internal bubble-chemistry. The numerical simulations have evidenced the formation of \(\mathrm{H}_{2}\) as well as other products such as \(\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, ^{1} \mathrm{OH}, \mathrm{H}, \mathrm{HO}_{2}\) and \(\mathrm{O}\) in the bubble during implosion. In all cases, \(\mathrm{H}_{2}\) was the main product formed in the bubbles at appreciable amount. Basing on the simulation results and using material balance for hydrogen in the gas and liquid phases, the production rate of \(\mathrm{H}_{2}\) in each phase has been quantified. The conclusion was that the main source of \(\mathrm{H}_{2}\) production during water sonolysis is the gas phase of the bubbles through the reaction \(^{1} \mathrm{OH} + \mathrm{H} \rightarrow \mathrm{H}_{2} + \mathrm{O}\).

\(\copyright\) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

* Corresponding author. Department of Chemical Engineering, Faculty of Pharmaceutical Engineering Process, University of Constantine 3, 25000 Constantine, Algeria. Tel./fax: +213 (0) 38876560.
E-mail addresses: s.merouani@yahoo.fr, s.merouani03@gmail.com (S. Merouani).
http://dx.doi.org/10.1016/j.ijhydene.2015.01.150
0360-3199/\(\copyright\) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Approximately 80% of the present world energy demand comes from fossil fuels [1]. Unlike fossil fuels, hydrogen gas (H₂) burns cleanly without emitting any environmental pollutants [2]. In addition, H₂ is also abundantly available in the universe and processes the highest energy content per unit of weight (i.e., 120.7 kJ/g) compared to any of the known fuels [1]. H₂ is considered to be the energy carrier of the future [3] and could have an important role in reducing environmental emissions. Several techniques have been used in the past for producing hydrogen. Steam methane reforming is the most widely used method for producing it [1,4]. Alternative ways could be used to generate H₂ such as ethanol gasification [5], water electrolysis [4,6], biological photosynthesis [7,8] and photocatalysis [9–11]. More recently, sonolysis of water have been successfully used for producing hydrogen [12–14]. Moreover, ultrasonic assisted hydrogen production from catalysis [15], photocatalysis [16–18], digestion sludge [19–21] and anaerobic fermentation of wastewater [22] have proven their improvement potential compared to each isolated technique (without ultrasound).

Since 1962, it has been recognized that propagation of an ultrasonic wave in aqueous solution (simply known as sonolysis) containing a solute can results in an oxidation process, which is called sonochemistry [23]. Besides this process, it was well established that H₂O₂ and H₂ are the main products of pure water sonolysis and the ratio of H₂ to H₂O₂ production is ~1.25 [13,14,24]. The generation of H₂ by water sonolysis does not arise from the direct interaction between acoustic wave and water but it produces upon acoustic cavitation, that is, the formation, growth and violently collapse of microscopic bubbles (filled with water vapor and dissolved gases) in a liquid medium irradiated by an ultrasonic wave (Fig. 1) [25]. The rapid collapse of these microbubbles is nearly adiabatic, making each bubble as a powered microreactor inside which temperature of several thousands of Kelvin and pressure of several hundreds of atmospheres are reached [26]. Under these enormous conditions, high temperature combustion-chemistry occurs in the bubble [27]. In fact, the trapped molecules in the bubble (water vapor, gases and vaporized solutes) can be brought to an excited-state and dissociate. As results, reactive species such as •OH, HO•, H•, O and H₂O₂ are created from H₂O and O₂ dissociation and their associate reactions in the bubble [28]. These chemical products may diffuse out of the bubble and dissolve in the surrounding liquid [29]. One of the most products of water sonolysis is hydrogen (H₂). It may be formed at rate of 10−15 μM min⁻¹ [13,14,24], which is much higher than that obtained by photocatalysis (~0.035 μM min⁻¹ [16]).

The mechanism of H₂ production from water sonolysis is until now under discussion. A number of researches postulated that the major part of H₂ is produced in the gas phase of the bubble and diffused to the solution whereas others indicated that H₂ is formed only at the liquid shell of the bubble by the recombination of hydrogen radicals diffused from the bubble (H+H→H₂). However, to the best of our knowledge, the mechanism of hydrogen production from water sonolysis is until now not understood. The present work is a contribution to the study of the mechanism of hydrogen generation during water sonolysis. A series of numerical simulations of chemical reactions occurring in the interior of an argon bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for various conditions. A kinetics mechanism of 25 reversible chemical reactions was postulated for studying the internal bubble-chemistry. On the basis of the simulation results, material balance for hydrogen in the gas and liquid phases has been carried out to evaluate the importance of each of the controversial reported suggestions and then determine the mechanism of H₂ generation during water sonolysis.

Model and computational methods

The theoretical model used in the present numerical simulations have been described in our previous works [34-36]. It combines the dynamic of single bubble in acoustic field with chemical kinetics consisting of series of chemical reactions occurring in the bubble at the collapse phase. The following is a brief description of the model.

Bubble dynamics model

A gas and vapor filled spherical bubble isolated in water oscillates under the action of a sinusoidal sound wave. The temperature and pressure in the bubble are assumed to be partially uniform and the gas content of the bubble behaves as an ideal gas [37]. The radial dynamics of the bubble is described by the Keller equation that includes first order terms in the Mach number M = R/c [38,39]:

$$\left(1 - \frac{R}{c}\right) \frac{d^2 R}{dt^2} + \frac{3}{2} \left(1 - \frac{R}{c}\right) \frac{dR}{dt} + \frac{1}{\rho_c} \left(1 + \frac{R}{c} \frac{dR}{dt} \frac{dR}{dt}\right) \left[p - p_\infty - \frac{2\pi}{R}
ight] = \frac{4\pi}{3} \frac{R}{c} \rho_v \sin(2\pi ft) $$

(1)

in this equation dots denote time derivatives (d/dt), R is the radius of the bubble, c is the speed of sound in the liquid, ρ_c is
the density of the liquid, \(\sigma \) is the surface tension, \(\mu \) is the liquid viscosity, \(p \) is the pressure inside the bubble, \(\rho_w \) is the ambient static pressure, \(p_A \) is the acoustic amplitude and \(f \) is the sound frequency. The acoustic amplitude \(p_A \) is correlated with the acoustic intensity \(I_a \) or power per unit area, as \(p_A = (2I_aR_0^2f)^{1/2} \) [29].

The expansion of the bubble is assumed as isothermal and its total compression is considered as adiabatic [40]. These assumptions, which are widely accepted since the lifetime of an oscillation at high frequency is relatively short with a very rapidly occurring collapse event, were pointed out by Yasui et al. [41] using a more detailed model. We also assume that the vapor pressure in the bubble remains constant during the bubble expansion phase and there is no gas diffusion during expansion and no mass and heat transfer of any kind during collapse. Storey and Szeri [42] demonstrated that the inclusion of mass transfer on the bubble dynamics has practically no effect on the maximum bubble temperature attained in the bubble at the collapse. This level of \(\frac{p_{\text{v}}}{p_{\text{min}}} \) is the vapor pressure, \(T_{\text{max}} \) is the maximum internal temperature (\(\frac{R_{\text{max}}}{R_{\text{min}}} \) is the minimum bubble radius at the collapse). This level of \(\frac{R_{\text{max}}}{R_{\text{min}}} \) was never attained in the present numerical study. Therefore, in order to reduce computational parameters, the current model takes, as input, initial bubble vapor content and neglects mass and heat transfer during bubble expansion and collapse.

Based on the above assumptions, the pressure and temperature inside the bubble at any instant during the collapse phase can be calculated from the bubble size as

\[
p = \left[P_0 + P_a \left(\frac{R_0}{R_{\text{max}}} \right)^3 \left(\frac{R_{\text{max}}}{R} \right)^3 \right] \left(\frac{R_{\text{max}}}{R_{\text{min}}} \right)^{3(\gamma - 1)} \]

(2)

\[
T = T_\infty \left(\frac{R_{\text{max}}}{R_{\text{min}}} \right)^{3(\gamma - 1)} \]

(3)

where \(P_0 \) is the vapor pressure, \(P_{\text{v0}} = p_w + (2\sigma/R_0) - P_0 \) is the gas pressure in the bubble at its ambient state (\(R = R_0 \)), \(R_0 \) is the ambient bubble radius, \(T_\infty \) is the bulk liquid temperature and \(\gamma \) is the ratio of specific heats capacities \((c_p/c_v) \) of the gas/vapor mixture. The maximum internal temperature \((T_{\text{max}}) \) and pressure \((p_{\text{max}}) \) in the bubble are reached at the end of the bubble collapse and are approximated by:

\[
T_{\text{max}} = T_\infty \left(\frac{R_{\text{max}}}{R_{\text{min}}} \right)^{3(\gamma - 1)} \]

(4)

\[
p_{\text{max}} = \left[P_0 + P_a \left(\frac{R_0}{R_{\text{max}}} \right)^3 \left(\frac{R_{\text{max}}}{R_{\text{min}}} \right)^3 \right] \left(\frac{R_{\text{max}}}{R_{\text{min}}} \right)^{3(\gamma - 1)} \]

(5)

It is important to notice here that the assumption of spatial uniform pressure and temperature inside the bubble is valid as long as inertia effects are negligible and the velocity of the bubble wall is below the speed of sound in the vapor/gas mixture. This assumption was justified in detail in the paper published by Kamath et al. [43]. In addition, Yasui et al. [41] and Fujikawa and Akamatsu [44] pointed out in their complete models which include heat transfer that the bubble temperature and pressure are roughly uniform except at a very thin layer, called thermal boundary, near the bubble wall.

Chemical kinetics model

A kinetics mechanism consisting in 19 chemical reactions and their backwards reactions (Table 1) is taken into account involving Ar, O\(_2\), H\(_2\)O, *OH, H\(_2\), O, HO\(_2\)*, H\(_2\) and H\(_2\)O\(_2\) species. The scheme in Table 1 has been partially validated from hydrogen flame studies [45] as well as shock-tube and reactor-type experiments [46].

Rate expressions for the chemical reactions consider elementary reversible reactions involving \(K \) chemical species, which can be represented in the general form as

\[
\sum_{k=1}^{K} \psi_k X_k = 0 \]

(6)

in which \(\psi_{k_i} \) in the stoichiometric coefficients of the \(i \)th reaction and \(X_k \) is the chemical symbol for the \(k \)th species. The superscript " indicates forward stoichiometric coefficients, while " indicates reverse stoichiometric coefficients. The production rate \(\omega_k \) of the \(k \)th species can be written as a summation of the rate of the variables for all reactions involving the \(k \)th species:

\[
\omega_k = \frac{1}{V} \frac{dn_k}{dt} = \sum_{k=1}^{K} (\psi_k - \psi_{k_i}) \]

(7)

where \(n_k \) is the number of moles of the \(k \)th species and \(V \) is the volume of the bubble.

The rate \(r_i \) for the \(i \)th reaction is given by the difference of the forward and reverse rates as

\[
r_i = k_i \prod_{k=1}^{K} [X_k]^{y_k} - k_i \prod_{k=1}^{K} [X_k]^{y_k} \]

(8)

where \([X_k] \) is the molar concentration of the \(k \)th species and \(k_i \) and \(k_i \) are the forward and reverse rate constants of the \(i \)th reaction, respectively. The forward and reverse rate constants for the \(i \)th reactions are assumed to have the following Arrhenius temperature dependence:

\[
k_i = A_i \exp \left(- \frac{E_{\text{a}}}{R_0 T} \right) \]

(9)

\[
k_i = A_i \exp \left(- \frac{E_{\text{a}}}{R_0 T} \right) \]

(10)

where \(R_0 \) is the universal gas constant, \(A_i \) (\(A_0 \)) is the pre-exponential factor, \(b_i \) is the temperature exponent and \(E_{\text{a}} \) (\(E_{\text{a}} \)) is the activation energy. Arrhenius parameters of each chemical reaction are listed in Table 1.

In some reactions of Table 1, a third body is required for the reaction to process. When a third body is needed, the reaction rate \(r_i \) of the \(i \)th reaction should be rewritten as

\[
r_i = \left(\sum_{k=1}^{K} \alpha_{k_i} [X_k] \right) k_i \prod_{k=1}^{K} [X_k]^{y_k} - k_i \prod_{k=1}^{K} [X_k]^{y_k} \]

(11)

\(\alpha_{k_i} \) is the third body efficiency factor of species \(k \) in the \(i \)th reaction.
Table 1—Scheme of the possible chemical reactions inside a collapsing argon bubble [28,29,34,37,39,40]. M is the third body. Subscript “f” denotes the forward reaction and “r” denotes the reverse reaction. A is in (cm² mol⁻¹ s⁻¹) for two body reaction [(cm² mol⁻¹ s⁻¹) for a three body reaction], and E_{ar} is in (cal mol⁻¹).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>A_f</th>
<th>b_f</th>
<th>E_{df}</th>
<th>A_r</th>
<th>b_r</th>
<th>E_{ar}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1. H₂O + M \rightarrow H⁺ + ‘OH + M</td>
<td>1.912 × 10²</td>
<td>−1.83</td>
<td>1.185 × 10⁵</td>
<td>2.200 × 10¹²</td>
<td>−2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>R2. ‘OH + M \rightarrow O + H⁺ + M</td>
<td>9.880 × 10¹⁷</td>
<td>−0.74</td>
<td>1.021 × 10⁵</td>
<td>4.714 × 10¹⁸</td>
<td>−1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>R3. O + O + M \rightarrow O₂ + M</td>
<td>6.185 × 10¹⁵</td>
<td>−0.50</td>
<td>0.00</td>
<td>4.515 × 10¹⁷</td>
<td>−0.64</td>
<td>1.189 × 10⁵</td>
</tr>
<tr>
<td>R4. H⁺ + O₂ \rightarrow H₂O</td>
<td>1.915 × 10¹⁴</td>
<td>0.00</td>
<td>1.644 × 10⁴</td>
<td>5.481 × 10¹¹</td>
<td>0.39</td>
<td>−2.93 × 10²</td>
</tr>
<tr>
<td>R5. ‘OH + O₂ \rightarrow HO₂ + M</td>
<td>1.475 × 10¹²</td>
<td>0.60</td>
<td>0.00</td>
<td>3.090 × 10¹²</td>
<td>0.53</td>
<td>4.887 × 10⁴</td>
</tr>
<tr>
<td>R6. O₂ + H₂O \rightarrow O₂ + ‘OH</td>
<td>2.970 × 10⁶</td>
<td>2.02</td>
<td>1.340 × 10⁴</td>
<td>1.465 × 10⁵</td>
<td>2.11</td>
<td>−2.904 × 10⁴</td>
</tr>
<tr>
<td>R7. HO₂ \rightarrow H₂O</td>
<td>1.660 × 10¹³</td>
<td>0.00</td>
<td>8.230 × 10³</td>
<td>3.164 × 10¹²</td>
<td>0.35</td>
<td>5.551 × 10⁴</td>
</tr>
<tr>
<td>R8. HO₂ + H₂ \rightarrow ‘OH + OH</td>
<td>7.079 × 10¹⁴</td>
<td>0.00</td>
<td>2.950 × 10⁴</td>
<td>2.027 × 10¹⁰</td>
<td>0.72</td>
<td>3.684 × 10⁵</td>
</tr>
<tr>
<td>R9. HO₂ + O \rightarrow ‘OH + O₂</td>
<td>3.250 × 10¹³</td>
<td>0.00</td>
<td>0.00</td>
<td>3.382 × 10¹²</td>
<td>0.33</td>
<td>5.328 × 10⁴</td>
</tr>
<tr>
<td>R10. HO₂ + ‘OH \rightarrow H₂O + O₂</td>
<td>2.890 × 10¹³</td>
<td>0.00</td>
<td>−4.970 × 10²</td>
<td>5.861 × 10¹³</td>
<td>0.24</td>
<td>6.908 × 10⁴</td>
</tr>
<tr>
<td>R11. H₂ + M \rightarrow H⁺ + ‘OH + M</td>
<td>4.577 × 10¹⁹</td>
<td>−1.40</td>
<td>1.044 × 10⁵</td>
<td>1.146 × 10²⁰</td>
<td>−1.68</td>
<td>8.200 × 10²⁰</td>
</tr>
<tr>
<td>R12. O + H₂ \rightarrow ‘OH + H₂O</td>
<td>3.820 × 10¹²</td>
<td>0.00</td>
<td>7.948 × 10⁴</td>
<td>2.667 × 10⁴</td>
<td>2.65</td>
<td>4.880 × 10³</td>
</tr>
<tr>
<td>R13. ‘OH + H₂ \rightarrow ‘OH + H₂O</td>
<td>2.160 × 10⁸</td>
<td>1.52</td>
<td>3.450 × 10⁴</td>
<td>2.298 × 10⁹</td>
<td>1.40</td>
<td>1.832 × 10⁴</td>
</tr>
<tr>
<td>R14. H₂O₂ + O₂ \rightarrow HO₂ + HO₂</td>
<td>4.634 × 10¹⁶</td>
<td>−0.35</td>
<td>5.067 × 10⁴</td>
<td>4.200 × 10¹⁰</td>
<td>0.00</td>
<td>1.198 × 10⁴</td>
</tr>
<tr>
<td>R15. H₂O₂ + M \rightarrow ‘OH + OH + M</td>
<td>2.951 × 10¹⁴</td>
<td>0.00</td>
<td>4.843 × 10⁴</td>
<td>1.00 × 10¹⁰</td>
<td>−0.37</td>
<td>0.00</td>
</tr>
<tr>
<td>R16. H₂O₂ + H₂ \rightarrow ‘OH + ‘OH</td>
<td>2.410 × 10¹³</td>
<td>0.00</td>
<td>3.970 × 10⁴</td>
<td>1.269 × 10⁸</td>
<td>1.31</td>
<td>7.141 × 10⁴</td>
</tr>
<tr>
<td>R17. H₂O₂ + ‘OH \rightarrow ‘OH + H₂O</td>
<td>6.025 × 10¹³</td>
<td>0.00</td>
<td>7.950 × 10⁴</td>
<td>1.041 × 10¹¹</td>
<td>0.70</td>
<td>2.395 × 10⁹</td>
</tr>
<tr>
<td>R18. H₂O₂ + O \rightarrow ‘OH + H₂O</td>
<td>9.550 × 10⁶</td>
<td>2.00</td>
<td>3.970 × 10⁴</td>
<td>8.660 × 10³</td>
<td>2.68</td>
<td>1.856 × 10⁴</td>
</tr>
<tr>
<td>R19. H₂O₂ + ‘OH \rightarrow ‘OH + H₂O</td>
<td>1.000 × 10¹²</td>
<td>0.00</td>
<td>0.00</td>
<td>1.838 × 10¹⁰</td>
<td>0.59</td>
<td>3.089 × 10⁴</td>
</tr>
</tbody>
</table>

Third body efficiency factors: R1: $\alpha_{11} = 0.75$, $\alpha_{11,O} = 12$, $\alpha_{11,\gamma} = 0.38$; R2: $\alpha_{21} = 2.5$, $\alpha_{21,O} = 12$, $\alpha_{21,\gamma} = 0.83$; R3: $\alpha_{31} = 2.5$, $\alpha_{31,O} = 12$, $\alpha_{31,\gamma} = 0.75$; R5: $\alpha_{51} = 1.3$, $\alpha_{51,O} = 14$, $\alpha_{51,\gamma} = 0.67$. R11: $\alpha_{11} = 2.5$, $\alpha_{11,O} = 12$; R15: $\alpha_{15} = 2.5$, $\alpha_{15,O} = 12$, $\alpha_{15,\gamma} = 0.64$.

Procedure of the numerical simulation

The Keller–Miksis equation (Eq. (1)), describing the dynamic of the bubble, is a non-linear second-order differential equation which requires an approximate numerical method for solution. Eq. (1) can be reduced to a system of two differential first-order equations

$$\frac{dR}{dt} = \frac{1}{V} \left(\frac{p - p_m - \frac{2}{3} - \frac{4}{3} \mu_s \pi + 4 \nu \sin \left(\frac{2\pi t}{V} \right) }{R} \right)$$

(12)

The simulation of the chemical reactions in the bubble starts at the beginning of the adiabatic phase (at time corresponding to $R = R_{\text{max}}$). The application of Eq. (7) for all species (9 species) involved in the scheme of Table 1 gives a system of nine ordinary differential equations. For example, according to Table 1, the application of Eq. (7) to the H₂O species gives:

$$\frac{d\nu_{H_2O}}{dt} = \frac{1}{V} \left(\frac{\nu_{H_2O} - \nu_{H_2O}^{\gamma}}{\nu_{H_2O}} \right)$$

(14)

where V is the volume of the bubble and n_{H_2O} is the number of moles of H₂O.

Using the ideal-gas law $PV = nRT$, Eq. (14) can be rewritten as:

$$\frac{dn_{H_2O}}{dt} = \frac{nRT}{\rho} \left(\frac{k_{f1}[H_2O][M] - k_{r1}[H][‘OH][M]}{[H_2O][M]} + \frac{k_{f2}[H_2O][O] - k_{r2}[‘OH]^2}{[H_2O][O]} - \frac{k_{f3}[H_2O][H] - k_{r3}[‘OH]}{[H_2O][H]} + \frac{k_{f4}[H_2O][H_2O] - k_{r4}[‘OH]}{[H_2O][H_2O]} \right)$$

(15)

The system of Eqs. (12) and (13) was solved by the fourth-order Runge–Kutta method using the following initial conditions:

$t = 0$, $R = R_0$ and $R = 0$

The physical properties used for numerical calculations are given for water at 20 °C as $\mu = 998.12$ kg m⁻¹ s⁻¹, $\sigma = 72.45 \times 10^{-1}$ N m⁻¹, $\nu = 10^{-2}$ kg s⁻¹ m⁻¹ and $c = 1482$ m s⁻¹.
start to form by thermal dissociation of H$_2$O in the bubble. Thus, the composition of the bubble on all species expected to be present was determined at any temperature during the collapse period by solving the system of the ordinary differential equations obtained by Eq. (7). The system of the ordinary differential equations was solved by the finite difference method. The computer simulation of the reactions system was stopped after the end of the bubble collapse.

Results and discussion

The range of ultrasound frequency commonly used in sonochemistry is from 20 kHz to ~1 MHz. However, based on some experimental results, the optimum ultrasonic frequency for sonochemistry has been reported to be around 355 kHz with regard to the rate of oxidants production by bubbles [47–50]. On the other hand, the ultrasonic frequency at 20 kHz has been mostly used for sonochemistry. Thus, the present numerical simulations have been performed for 20 and 355 kHz. In these conditions, the mean ambient radius (R_0) of active bubbles are determined experimentally as 7.5 μm at 20 kHz [51,52] and 3.2 μm at 355 kHz [53]. The active bubbles are those bubbles that collapse violently and are capable for producing sonochemistry. Furthermore, as hydrogen was quantified in the most cases during the sonolysis of water saturated with argon [13,14,24], the numerical simulations have been performed for an argon bubble.

In Figs. 2 and 3, the results of the numerical simulations have been shown at 20 and 355 kHz. In Figs. 2(a) and 3(a), the liquid pressure applied on the bubble, which is the sum of the acoustic pressure and the static pressure, have been shown for one acoustic period (50 μs at 20 kHz and 2.8 μm at 355 kHz). In Figs. 2(b) and 3(b), the bubble radius has been shown as function of time for one acoustic cycle. It was seen that the bubble initially expands during the rarefaction phase of ultrasound wave, reaching a resonance size ($15.7R_0$ at 20 kHz and $3R_0$ at 355 kHz) at around the end of the rarefaction cycle and then violently collapses to a minimum size ($-0.7R_0$ at 20 kHz and $-0.5R_0$ μm at 355 kHz) during the compression phase of ultrasound. The bubble then continuous with an equilibrium size before a successive expansion period. In Figs. 2(c) and 3(c), the bubble wall speeds have been shown as function of time. It was seen that the speeds of the bubble wall increased drastically during the final stage of the implosion and attained values of 346 and 71.6 m s$^{-1}$ at respectively 20 and 355 kHz and then decreased very soon. These high speeds of implosion generate stronger collapses, which yielded enormous conditions inside the bubbles. Indeed, the bubble internal pressure may increase up to 4090 and 238 atm at the end of the bubble collapse at respectively 20 and 355 kHz, as can be seen in Figs. 2(d) and 3(d). Correspondingly, the temperature inside a bubble attained 6060 and 5300 K at the end of the bubble collapse at respectively 20 and 355 kHz. Such extreme conditions produced inside the bubble providing a unique environment where high-energy chemical reactions occur as can be seen in Fig. 4, which is an enlargement view of the chemical reactions occurring in the bubble at the final stage of the bubble collapse.

Fig. 2 — The calculated results at 20 kHz as function of time for one acoustic period (50 μs) (conditions: ambient bubble radius: 7.5 μm, acoustic intensity: 1 W cm$^{-2}$). (a) liquid pressure, (b) bubble radius, (c) bubble wall velocity and (d) pressure inside a bubble. The vertical axis in (d) is in logarithmic scale.
At 20 kHz, the most initial bubble content is water vapor and trace of argon (Fig. 4(a)). In contrast, at 355 kHz, the bubble is of gaseous nature (Fig. 4(b)). When the temperature and pressure in the bubble increased during the final stage of the bubble collapse, chemical reactions occurred and many chemical products such as H_2O, H_2O_2, $\cdot\text{OH}$, $\cdot\text{O}$, $\cdot\text{H}$ and HO_2 are created from the thermal dissociation of water vapor and gases molecules and their associate reactions (Fig. 4(a) and (b)). The reaction time is very short (~0.075 ms at 20 kHz and ~0.035 ms at 355 kHz). From Fig. 4(a) and (b), it is clearly observed that while $\cdot\text{OH}$ and $\cdot\text{O}$ are the main radical species created, H_2 is the main molecular product formed in the bubble at appreciable amount. Thus, the numerical simulations evidenced the formation of hydrogen during acoustic cavitation event. It was also seen that the H_2 evolution in the bubble attained its upper limit at the end of the bubble collapse (at R_{min}), followed by almost constant production as the bubble temperature decreases suddenly after the end of the bubble collapse. H_2 constitutes more than 35.3% of the bubble contents at 20 kHz and more than 17.2% at 355 kHz. By analyzing the chemical kinetic results, it was found that more than 99%

Fig. 3 — The calculated results at 355 kHz as function of time for one acoustic period (2.8 μs) (conditions: ambient bubble radius: 3.2 μm, acoustic intensity: 1 W cm$^{-2}$). (a) liquid pressure, (b) bubble radius, (c) bubble wall velocity and (d) pressure inside a bubble. The vertical axis in (d) is in logarithmic scale.

Fig. 4 — Evolution of the reactions system inside a bubble as function of time at around the end of the bubble collapse at (a) 20 kHz and (b) 355 kHz (conditions: ambient bubble radius: 7.5 at 20 kHz and 3.2 μm at 355 kHz, acoustic intensity: 1 W cm$^{-2}$). The principal vertical axes are in logarithmic scale and the horizontal axes are presented for only ~0.072 μs in (a) and ~0.035 μs in (b).
of H₂ were coming from the reaction H⁺ + ·OH ↔ H₂ + O. Therefore, H₂ was formed in the bubble mainly from the recombination of the primary radicals created in the bubble (H⁺, ·OH). The fort consumption of these radicals at high bubble temperatures is clearly reflected by the appearance of an optimum on the curve of ·OH radical before the end of the bubble collapse, which is the same reason for the higher yield of O atoms at the end of the bubble collapse.

Several authors [32,33] suggested that H₂ is formed mainly through the recombination of hydrogen atoms at the liquid shell of the bubble via the reaction H⁺ + H⁺ ↔ H₂. To discuss this suggestion let assuming a number N of active bubbles formed in the cavitation medium (N is of the order of 10⁶) bubbles L⁻¹ s⁻¹ at 20 kHz and 10⁸ bubbles L⁻¹ s⁻¹ at 355 kHz [34]. Thus, the overall production rates of H₂ (r_H₂) can be expressed as

\[n_{H_2} = N \times n_{H_i} + k \times [H]^2 \] \hspace{1cm} (16)

where N (in bubbles L⁻¹ s⁻¹) is the number of bubbles collapsing per unit volume per unit time, n_{H_i} (in mol) is the mole number of H₂ released by a single bubble (evaluated at R_{min}) and k is the liquid rate constant of the reaction H⁺ + H⁺ ↔ H₂. The first part of Eq. (16) is related to the production of molecular H₂ from the gas phase of the bubbles through the reaction H⁺ + ·OH ↔ H₂ + O and the second part is related to the production of H₂ from the reaction H⁺ + H⁺ ↔ H₂ at the liquid shell of the bubble. This latter can be related to the production rate of H⁺ (r_H⁺) as

\[r_{H_2} = n_{H_i} - 2k \times [H]^2 \] \hspace{1cm} (17)

where n_{H_i} is the mole number of H⁺ released by a single bubble (evaluated at R_{min}). The steady-state condition for H⁺ (t_{H⁺} = 0) gives:

\[k \times [H]^2 = \frac{1}{2} N \times n_{H_i} \] \hspace{1cm} (18)

By substituting (18) in (16), we obtained:

\[n_{H_2} = N \times n_{H_i} + \frac{1}{2} N \times n_{H_i} \] \hspace{1cm} (19)

Thus, the overall production rate of H₂ shows two routes:

-Production from the gas phase of the bubble, r_g : \[r_g = N \times n_{H_i} \] \hspace{1cm} (20)

-Production at the liquid shell of the bubble, r_l : \[r_l = \frac{1}{2} N \times n_{H_i} \] \hspace{1cm} (21)

The ratio of Eq. (20) to Eq. (21) gives:

\[\frac{r_g}{r_l} = 2 \times \frac{n_{H_i}}{n_{H_i}} \] \hspace{1cm} (22)

Expressing n_{H₂} and n_{H_i} with the general equation of perfect gases \[n_i = y_i \times n \], this lead to:

\[\frac{r_g}{r_l} = 2 \times \frac{y_{H_2}}{y_{H^+}} \] \hspace{1cm} (23)

where \[y_{H_2} \] and \[y_{H^+} \] are the mole fractions of H₂ and H⁺ in the bubble at the final moment of implosion (at R_{min}). They are obtained from Fig. 4(a) and (b) as:

- 20 kHz: \[y_{H_2} = 35.3\% \], \[y_{H^+} = 9.78\% \] \[\Rightarrow \frac{r_g}{r_l} = 7.22 \]
- 355 kHz: \[y_{H_2} = 17.2\% \], \[y_{H^+} = 7.86\% \] \[\Rightarrow \frac{r_g}{r_l} = 4.37 \]

Consequently, it can be observed that the production of H₂ from the gas phase of the bubble through the reaction H⁺ + ·OH ↔ H₂ + O is higher by factors of 7.23 and 4.37, at respectively 20 and 355 kHz, than the production suggested at the liquid shell of the bubble via the reaction H⁺ + H⁺ ↔ H₂. The lower \[\frac{r_g}{r_l} \] ratio at 355 kHz is well justified by the fact that at high frequency the reaction system inside a bubble has not enough time to evolves and then converts radicals to H₂ through H⁺ + ·OH ↔ H₂ + O (the reaction time at 20 kHz is ~2 times larger than that at 355 kHz, as indicated in Fig. 4) due to the short bubble collapse time (Figs. 2(b) and 3(b)) at high frequency. Consequently, the formation of H₂ at the shell of the bubble via the reaction H⁺ + H⁺ ↔ H₂ is important at 355 kHz than at 20 kHz.

Finally, by regarding the high values of \[\frac{r_g}{r_l} \] ratio for both cases (20 and 355 kHz), it can be concluded that the dominant source of H₂ generation during sonolysis of water saturated with argon is the gas phase of the bubble through the reaction H⁺ + ·OH ↔ H₂ + O whereas the recombination reaction (H⁺ + H⁺ ↔ H₂) at the shell of the bubble plays only a minor role.

Conclusions

This study aimed to clarify the mechanism of hydrogen production from water sonolysis. By proposing a mechanism of 25 reversible chemical reactions for the internal bubble-chemistry, a series of numerical simulations of chemical reactions occurring in a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for various conditions. On the basis of the simulation results, material balance for hydrogen production in the gas and liquid phases has been carried out to evaluate the internal-bubble and the external-bubble ways of H₂ production. The numerical simulations have evidenced the formation of H₂ in the bubble. By analyzing the results of the predicted production rate of H₂ in the gas and liquid phases, it was concluded that the main source of H₂ production during water sonolysis is the gas phase of the bubbles through the reaction H⁺ + ·OH ↔ H₂ + O.

Acknowledgments

The financial support by the Ministry of Higher Education and Scientific Research of Algeria (project No. J0101120120098) is greatly acknowledged.

References

Nomenclature and units

- c: speed of sound in the liquid medium, m s⁻¹
- f: frequency of ultrasonic wave, Hz
- I_a: acoustic intensity of ultrasonic irradiation, W m⁻²
- p: pressure inside a bubble, Pa
- p_{max}: maximum pressure inside a bubble, Pa
- p_a: ambient static pressure, Pa
- P_A: amplitude of the acoustic pressure, Pa
- P_v: vapor pressure of water, Pa
- P_g: initial gas pressure, Pa
- R: radius of the bubble, m
- R_{max}: maximum radius of the bubble, m
- R_b: ambient bubble radius, m
- t: time, s
- T: temperature inside a bubble, K
- T_{max}: maximum temperature inside a bubble, K
- T_b: bulk liquid temperature, K

Greek letters

- γ: specific heat ratio (c_p/c_v) of the gas mixture
- σ: surface tension of liquid water, N m⁻¹
- ρ: density of liquid water, kg m⁻³